
Petri Nets Tutorial, Parametric Verification
(session 1)

Étienne André, Didier Lime, Wojciech Penczek, Laure Petrucci

Etienne.Andre@lipn.univ-paris13.fr LIPN, Université Paris 13
Didier.Lime@ec-nantes.fr IRCCyN, École Centrale de Nantes
penczek@ipipan.waw.pl IPI-PAN, Warsaw

Laure.Petrucci@lipn.univ-paris13.fr LIPN, Université Paris 13

June 21st, 2016

1 / 91

Thanks

Thanks for their support to...

project PACS ANR-14-CE28-0002
IPI-PAN, IRCCyN, LIPN

and of course...

All the developers of the tools

2 / 91

Outline

General Introduction
Why parameters and of what kind?
Modelling languages: PN, PTA and their extensions.
Problems of interest.

Parametric Timed Automata
Basic definitions and examples.
Decidability results.
EFSynth and IM algorithms.
Distributed algorithms.
IMITATOR in a nutshell.

Parametric Interval Markov Chains
Basic definitions and examples.
Algorithm for Parameter Synthesis.
Detailed example.

3 / 91

4 / 91

General Introduction

5 / 91

First of all. . .

You know about automata and/or Petri nets:

about their structure

about their behaviour

some analysis techniques

Nice means to model and analyse concurrent systems. . .

. . . but . . .

need for tuning the model

need for parametrisation

Let us have a deeper look into this now

6 / 91

First of all. . .

You know about automata and/or Petri nets:

about their structure

about their behaviour

some analysis techniques

Nice means to model and analyse concurrent systems. . .

. . . but . . .

need for tuning the model

need for parametrisation

Let us have a deeper look into this now

6 / 91

First of all. . .

You know about automata and/or Petri nets:

about their structure

about their behaviour

some analysis techniques

Nice means to model and analyse concurrent systems. . .

. . . but . . .

need for tuning the model

need for parametrisation

Let us have a deeper look into this now

6 / 91

Why parameters and of what kind?

Why parameters?
1 several copies of a same process or component, dimensioning, e.g.:

sensors in a wireless sensor network
2 multiple a priori possible actions, e.g.:

modelling different design choices
3 several hardware characteristics, e.g.:

different response time of electronic components

What kind of parameters?
1 instances numbering
2 enabled/disabled actions
3 time or probabilities

7 / 91

Why parameters and of what kind?

Why parameters?
1 several copies of a same process or component, dimensioning, e.g.:

sensors in a wireless sensor network
2 multiple a priori possible actions, e.g.:

modelling different design choices
3 several hardware characteristics, e.g.:

different response time of electronic components

What kind of parameters?
1 instances numbering
2 enabled/disabled actions
3 time or probabilities

7 / 91

Modelling languages: PN, automata and their extensions

Usual modelling languages are not sufficient:

numbering possible with CPN, but fixed a priori

no specific handling of (un)controllable actions

timing included in TA or TPN, but also fixed

8 / 91

Problems of interest

model parts of interest with parameters

find some constraints on parameters guaranteeing desired properties

find all parameter values guaranteeing these properties

9 / 91

Conclusion

At this stage:

you have an idea on parametric modelling issues
instances
(un)controllable actions
time or probability constraints

. . . and problems to address

Let us start with timing parameters (next sequence)

10 / 91

Conclusion

At this stage:

you have an idea on parametric modelling issues
instances
(un)controllable actions
time or probability constraints

. . . and problems to address

Let us start with timing parameters (next sequence)

10 / 91

11 / 91

Parametric Timed Automata: Basic
definitions and examples

12 / 91

First of all. . .

You have an idea on:

parametric modelling issues
instances
(un)controllable actions
time or probability constraints

problems to address

Let us introduce timing parameters now

13 / 91

First of all. . .

You have an idea on:

parametric modelling issues
instances
(un)controllable actions
time or probability constraints

problems to address

Let us introduce timing parameters now

13 / 91

Timed automaton (TA)

Finite state automaton (sets of locations

and actions

)

augmented with a set X
of clocks Alur and Dill [1994]

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants

and guards

Features

Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition
Clock reset: some of the clocks can be set to 0 at each transition

14 / 91

Timed automaton (TA)

Finite state automaton (sets of locations and actions)

augmented with a set X
of clocks Alur and Dill [1994]

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants

and guards

Features

Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition
Clock reset: some of the clocks can be set to 0 at each transition

start?

x := 0
y := 0

y = 5

cup!

x ≥ 1

sugar?

x := 0

y = 8

coffee!

14 / 91

Timed automaton (TA)

Finite state automaton (sets of locations and actions) augmented with a set X
of clocks Alur and Dill [1994]

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants

and guards

Features

Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition
Clock reset: some of the clocks can be set to 0 at each transition

start?

x := 0
y := 0

y = 5

cup!

x ≥ 1

sugar?

x := 0

y = 8

coffee!

14 / 91

Timed automaton (TA)

Finite state automaton (sets of locations and actions) augmented with a set X
of clocks Alur and Dill [1994]

Real-valued variables evolving linearly at the same rate
Can be compared to integer constants in invariants

and guards

Features

Location invariant: property to be verified to stay at a location

Transition guard: property to be verified to enable a transition
Clock reset: some of the clocks can be set to 0 at each transition

y ≤5

y ≤ 8
start?

x := 0
y := 0

y = 5

cup!

x ≥ 1

sugar?

x := 0

y = 8

coffee!

14 / 91

Timed automaton (TA)

Finite state automaton (sets of locations and actions) augmented with a set X
of clocks Alur and Dill [1994]

Real-valued variables evolving linearly at the same rate
Can be compared to integer constants in invariants and guards

Features

Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition

Clock reset: some of the clocks can be set to 0 at each transition

y ≤5

y ≤ 8
start?

x := 0
y := 0

y = 5
cup!

x ≥ 1
sugar?

x := 0

y = 8
coffee!

14 / 91

Timed automaton (TA)

Finite state automaton (sets of locations and actions) augmented with a set X
of clocks Alur and Dill [1994]

Real-valued variables evolving linearly at the same rate
Can be compared to integer constants in invariants and guards

Features

Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition
Clock reset: some of the clocks can be set to 0 at each transition

y ≤5

y ≤ 8
start?
x := 0
y := 0

y = 5
cup!

x ≥ 1
sugar?
x := 0

y = 8
coffee!

14 / 91

Concrete semantics of timed automata

Concrete state of a TA: pair (l,w), where

l is a location,
w is a valuation of each clock

Concrete run: alternating sequence of concrete states and actions or time
elapse

15 / 91

Examples of concrete runs

y ≤ 5
y ≤ 8

start?
x := 0
y := 0

y = 5
cup!

x ≥ 1
sugar?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

0
0

x
y

Coffee with 2 doses of sugar

0
0

x
y

16 / 91

Examples of concrete runs

y ≤ 5
y ≤ 8

start?
x := 0
y := 0

y = 5
cup!

x ≥ 1
sugar?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

0
0

x
y

15.4
15.4

0
0

5
5

5
5

8
8

8
8

15.4 start? 5 cup! 3 coffee!

Coffee with 2 doses of sugar

0
0

x
y

16 / 91

Examples of concrete runs

y ≤ 5
y ≤ 8

start?
x := 0
y := 0

y = 5
cup!

x ≥ 1
sugar?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

0
0

x
y

15.4
15.4

0
0

5
5

5
5

8
8

8
8

15.4 start? 5 cup! 3 coffee!

Coffee with 2 doses of sugar

0
0

x
y

0
0

1.5
1.5

0
1.5

2.7
4.2

0
4.2

0.8
5

0.8
5

3.8
8

3.8
8

start? 1.5 sugar? 2.7 sugar? 0.8 cup! 3 coffee!

16 / 91

Verification of (timed) properties

y ≤ 5
y ≤ 8

start?
x := 0
y := 0

y =5
cup!

x ≥ 1
sugar?
x :=0

y =8
coffee!

Decide whether the following properties are satisfied for the timed coffee vending
machine

“Once the cup is delivered, coffee will come next within 2 seconds.”

“It is possible to get a coffee with 5 doses of sugar.”

“After the start button is pressed, a coffee is always eventually delivered.”

“It is impossible to press the sugar button twice within 1 second.”

17 / 91

Verification of (timed) properties

y ≤ 5
y ≤ 8

start?
x := 0
y := 0

y =5
cup!

x ≥ 1
sugar?
x :=0

y =8
coffee!

Decide whether the following properties are satisfied for the timed coffee vending
machine

× “Once the cup is delivered, coffee will come next within 2 seconds.”

“It is possible to get a coffee with 5 doses of sugar.”

“After the start button is pressed, a coffee is always eventually delivered.”

“It is impossible to press the sugar button twice within 1 second.”

17 / 91

Verification of (timed) properties

y ≤ 5
y ≤ 8

start?
x := 0
y := 0

y =5
cup!

x ≥ 1
sugar?
x :=0

y =8
coffee!

Decide whether the following properties are satisfied for the timed coffee vending
machine

× “Once the cup is delivered, coffee will come next within 2 seconds.”
√

“It is possible to get a coffee with 5 doses of sugar.”

“After the start button is pressed, a coffee is always eventually delivered.”

“It is impossible to press the sugar button twice within 1 second.”

17 / 91

Verification of (timed) properties

y ≤ 5
y ≤ 8

start?
x := 0
y := 0

y =5
cup!

x ≥ 1
sugar?
x :=0

y =8
coffee!

Decide whether the following properties are satisfied for the timed coffee vending
machine

× “Once the cup is delivered, coffee will come next within 2 seconds.”
√

“It is possible to get a coffee with 5 doses of sugar.”
√

“After the start button is pressed, a coffee is always eventually delivered.”

“It is impossible to press the sugar button twice within 1 second.”

17 / 91

Verification of (timed) properties

y ≤ 5
y ≤ 8

start?
x := 0
y := 0

y =5
cup!

x ≥ 1
sugar?
x :=0

y =8
coffee!

Decide whether the following properties are satisfied for the timed coffee vending
machine

× “Once the cup is delivered, coffee will come next within 2 seconds.”
√

“It is possible to get a coffee with 5 doses of sugar.”
√

“After the start button is pressed, a coffee is always eventually delivered.”

× “It is impossible to press the sugar button twice within 1 second.”

17 / 91

Why timing parameters?

Challenge 1: systems incompletely specified
Some delays may not be known yet, or may change

Challenge 2: Robustness Markey [2011]

What happens if 8 is implemented with 7.99?
Can I really get a coffee with 5 doses of sugar?

Challenge 3: Optimisation of timing constants
Up to which value of the delay between two actions sugar? can I still order a
coffee with 3 doses of sugar?

Challenge 4: Avoid numerous verifications
If one of the timing delays of the model changes, should I model check again the
whole system?

A solution: Parametric analysis
Consider that timing constants are unknown (parameters)
Find good values for the parameters s.t. the system behaves well

18 / 91

Why timing parameters?

Challenge 1: systems incompletely specified
Some delays may not be known yet, or may change

Challenge 2: Robustness Markey [2011]

What happens if 8 is implemented with 7.99?
Can I really get a coffee with 5 doses of sugar?

Challenge 3: Optimisation of timing constants
Up to which value of the delay between two actions sugar? can I still order a
coffee with 3 doses of sugar?

Challenge 4: Avoid numerous verifications
If one of the timing delays of the model changes, should I model check again the
whole system?

A solution: Parametric analysis
Consider that timing constants are unknown (parameters)
Find good values for the parameters s.t. the system behaves well

18 / 91

Parametric Timed Automaton (PTA)

Timed automaton (sets of locations, actions and clocks)

augmented with a
set P of parameters Alur et al. [1993]

Unknown constants compared to a clock in guards and invariants

y ≤ 5
y ≤ 8

start?
x := 0
y := 0

y =5
cup!

x ≥ 1
sugar?
x :=0

y =8
coffee!

19 / 91

Parametric Timed Automaton (PTA)

Timed automaton (sets of locations, actions and clocks) augmented with a
set P of parameters Alur et al. [1993]

Unknown constants compared to a clock in guards and invariants

y ≤ p2

y ≤ 8
start?
x := 0
y := 0

y =p2
cup!

x ≥ p1
sugar?
x :=0

y =p3
coffee!

19 / 91

Conclusion

At this stage:

you have an idea on Parametric Timed Automata

and the challenges for parametric analysis

Let us go for decidability results (next sequence)

20 / 91

Conclusion

At this stage:

you have an idea on Parametric Timed Automata

and the challenges for parametric analysis

Let us go for decidability results (next sequence)

20 / 91

21 / 91

Decidability results for Parametric
Timed Automata

22 / 91

First of all. . .

You have an idea on:

Parametric Timed Automata

the challenges for parametric analysis

Let us now see some decidability results

23 / 91

First of all. . .

You have an idea on:

Parametric Timed Automata

the challenges for parametric analysis

Let us now see some decidability results

23 / 91

What is decidability?

A decision problem is decidable if one can design an algorithm that, for any input
of the problem, can answer yes or no (in a finite time, with a finite memory).

Examples:

“given three integers, is one of them the product of the other two?”

“given a timed automaton, does there exist a run from the initial state to a
given location l?”

“given a context-free grammar, does it generate all strings?”

“given a Turing machine, will it eventually halt?”

24 / 91

What is decidability?

A decision problem is decidable if one can design an algorithm that, for any input
of the problem, can answer yes or no (in a finite time, with a finite memory).

Examples:

“given three integers, is one of them the product of the other two?”

“given a timed automaton, does there exist a run from the initial state to a
given location l?”

“given a context-free grammar, does it generate all strings?”

“given a Turing machine, will it eventually halt?”

24 / 91

What is decidability?

A decision problem is decidable if one can design an algorithm that, for any input
of the problem, can answer yes or no (in a finite time, with a finite memory).

Examples:
√

“given three integers, is one of them the product of the other two?”

“given a timed automaton, does there exist a run from the initial state to a
given location l?”

“given a context-free grammar, does it generate all strings?”

“given a Turing machine, will it eventually halt?”

24 / 91

What is decidability?

A decision problem is decidable if one can design an algorithm that, for any input
of the problem, can answer yes or no (in a finite time, with a finite memory).

Examples:
√

“given three integers, is one of them the product of the other two?”
√

“given a timed automaton, does there exist a run from the initial state to a
given location l?”

“given a context-free grammar, does it generate all strings?”

“given a Turing machine, will it eventually halt?”

24 / 91

What is decidability?

A decision problem is decidable if one can design an algorithm that, for any input
of the problem, can answer yes or no (in a finite time, with a finite memory).

Examples:
√

“given three integers, is one of them the product of the other two?”
√

“given a timed automaton, does there exist a run from the initial state to a
given location l?”

× “given a context-free grammar, does it generate all strings?”

“given a Turing machine, will it eventually halt?”

24 / 91

What is decidability?

A decision problem is decidable if one can design an algorithm that, for any input
of the problem, can answer yes or no (in a finite time, with a finite memory).

Examples:
√

“given three integers, is one of them the product of the other two?”
√

“given a timed automaton, does there exist a run from the initial state to a
given location l?”

× “given a context-free grammar, does it generate all strings?”

× “given a Turing machine, will it eventually halt?”

24 / 91

Why studying decidability?

If a decision problem is undecidable, it is hopeless to look for algorithms yielding
exact solutions for computation problems (because that is impossible)

However, one can:

design semi-algorithms: if the algorithm halts, then its result is correct

design algorithms yielding over- or under-approximations

25 / 91

Why studying decidability?

If a decision problem is undecidable, it is hopeless to look for algorithms yielding
exact solutions for computation problems (because that is impossible)

However, one can:

design semi-algorithms: if the algorithm halts, then its result is correct

design algorithms yielding over- or under-approximations

25 / 91

Decision and computation problems for PTA

EF-Emptiness “Does there exist a parameter valuation for which a given
location l is reachable?”
Example: “Does there exist at least one parameter valuation for which I can
get a coffee with 2 sugars?”

√
, e.g. p1 = 1, p2 = 5, p3 = 8

EF-Universality “Do all parameter valuations allow to reach a given
location l?”
Example: “Are all parameter valuations such that I may eventually get a
coffee?”

×, e.g. p1 = 1, p2 = 5, p3 = 2

Preservation of the untimed language “Given a parameter valuation, does
there exist another valuation with the same untimed language?”
Example: “Given the valuation p1 = 1, p2 = 5, p3 = 8, do there exist other
valuations with the same possible untimed behaviours?”

√

EF-Synthesis “Find all parameter valuations for which a given location l is
reachable”
Example: “What are all parameter valuations such that one may eventually
get a coffee?”

0 ≤ p2 ≤ p3 ≤ 8

26 / 91

Decision and computation problems for PTA

EF-Emptiness “Does there exist a parameter valuation for which a given
location l is reachable?”
Example: “Does there exist at least one parameter valuation for which I can
get a coffee with 2 sugars?”

√
, e.g. p1 = 1, p2 = 5, p3 = 8

EF-Universality “Do all parameter valuations allow to reach a given
location l?”
Example: “Are all parameter valuations such that I may eventually get a
coffee?”

×, e.g. p1 = 1, p2 = 5, p3 = 2

Preservation of the untimed language “Given a parameter valuation, does
there exist another valuation with the same untimed language?”
Example: “Given the valuation p1 = 1, p2 = 5, p3 = 8, do there exist other
valuations with the same possible untimed behaviours?”

√

EF-Synthesis “Find all parameter valuations for which a given location l is
reachable”
Example: “What are all parameter valuations such that one may eventually
get a coffee?”

0 ≤ p2 ≤ p3 ≤ 8

26 / 91

Decision and computation problems for PTA

EF-Emptiness “Does there exist a parameter valuation for which a given
location l is reachable?”
Example: “Does there exist at least one parameter valuation for which I can
get a coffee with 2 sugars?”

√
, e.g. p1 = 1, p2 = 5, p3 = 8

EF-Universality “Do all parameter valuations allow to reach a given
location l?”
Example: “Are all parameter valuations such that I may eventually get a
coffee?” ×, e.g. p1 = 1, p2 = 5, p3 = 2

Preservation of the untimed language “Given a parameter valuation, does
there exist another valuation with the same untimed language?”
Example: “Given the valuation p1 = 1, p2 = 5, p3 = 8, do there exist other
valuations with the same possible untimed behaviours?”

√

EF-Synthesis “Find all parameter valuations for which a given location l is
reachable”
Example: “What are all parameter valuations such that one may eventually
get a coffee?”

0 ≤ p2 ≤ p3 ≤ 8

26 / 91

Decision and computation problems for PTA

EF-Emptiness “Does there exist a parameter valuation for which a given
location l is reachable?”
Example: “Does there exist at least one parameter valuation for which I can
get a coffee with 2 sugars?”

√
, e.g. p1 = 1, p2 = 5, p3 = 8

EF-Universality “Do all parameter valuations allow to reach a given
location l?”
Example: “Are all parameter valuations such that I may eventually get a
coffee?” ×, e.g. p1 = 1, p2 = 5, p3 = 2

Preservation of the untimed language “Given a parameter valuation, does
there exist another valuation with the same untimed language?”
Example: “Given the valuation p1 = 1, p2 = 5, p3 = 8, do there exist other
valuations with the same possible untimed behaviours?”

√

EF-Synthesis “Find all parameter valuations for which a given location l is
reachable”
Example: “What are all parameter valuations such that one may eventually
get a coffee?”

0 ≤ p2 ≤ p3 ≤ 8

26 / 91

Decision and computation problems for PTA

EF-Emptiness “Does there exist a parameter valuation for which a given
location l is reachable?”
Example: “Does there exist at least one parameter valuation for which I can
get a coffee with 2 sugars?”

√
, e.g. p1 = 1, p2 = 5, p3 = 8

EF-Universality “Do all parameter valuations allow to reach a given
location l?”
Example: “Are all parameter valuations such that I may eventually get a
coffee?” ×, e.g. p1 = 1, p2 = 5, p3 = 2

Preservation of the untimed language “Given a parameter valuation, does
there exist another valuation with the same untimed language?”
Example: “Given the valuation p1 = 1, p2 = 5, p3 = 8, do there exist other
valuations with the same possible untimed behaviours?”

√

EF-Synthesis “Find all parameter valuations for which a given location l is
reachable”
Example: “What are all parameter valuations such that one may eventually
get a coffee?” 0 ≤ p2 ≤ p3 ≤ 8

26 / 91

Decidability for PTA

EF-emptiness problem
“Does there exist a parameter valuation for which a given location l is
reachable?”
undecidable Alur et al. [1993]; Beneš et al. [2015]

EF-universality problem
“Do all parameter valuations allow to reach a given location l?”
undecidable André et al. [2016]

Preservation of the untimed language
“Given a parameter valuation, does there exist another valuations with the
same untimed language?”
undecidable André and Markey [2015]

In fact most interesting problems for PTAs are undecidable André [2015]

27 / 91

Decidability for PTA

EF-emptiness problem
“Does there exist a parameter valuation for which a given location l is
reachable?”
undecidable Alur et al. [1993]; Beneš et al. [2015]

EF-universality problem
“Do all parameter valuations allow to reach a given location l?”
undecidable André et al. [2016]

Preservation of the untimed language
“Given a parameter valuation, does there exist another valuations with the
same untimed language?”
undecidable André and Markey [2015]

In fact most interesting problems for PTAs are undecidable André [2015]

27 / 91

Decidability for PTA

EF-emptiness problem
“Does there exist a parameter valuation for which a given location l is
reachable?”
undecidable Alur et al. [1993]; Beneš et al. [2015]

EF-universality problem
“Do all parameter valuations allow to reach a given location l?”
undecidable André et al. [2016]

Preservation of the untimed language
“Given a parameter valuation, does there exist another valuations with the
same untimed language?”
undecidable André and Markey [2015]

In fact most interesting problems for PTAs are undecidable André [2015]

27 / 91

Decidability for PTA

EF-emptiness problem
“Does there exist a parameter valuation for which a given location l is
reachable?”
undecidable Alur et al. [1993]; Beneš et al. [2015]

EF-universality problem
“Do all parameter valuations allow to reach a given location l?”
undecidable André et al. [2016]

Preservation of the untimed language
“Given a parameter valuation, does there exist another valuations with the
same untimed language?”
undecidable André and Markey [2015]

In fact most interesting problems for PTAs are undecidable André [2015]

27 / 91

Limiting the number of clocks

Undecidability is achieved for a single parameter Miller [2000]; Beneš et al. [2015]

However, reducing the number of clocks yields decidability of the EF-emptiness
problem:

√
1 parametric clock and arbitrarily many non-parametric clocks and
integer-valued parameters Beneš et al. [2015]

√
1 parametric clock and arbitrarily many rational-valued parameters Miller [2000]

√
2 parametric clocks and 1 integer-valued parameter Bundala and Ouaknine [2014]

28 / 91

Limiting the number of clocks

Undecidability is achieved for a single parameter Miller [2000]; Beneš et al. [2015]

However, reducing the number of clocks yields decidability of the EF-emptiness
problem:
√

1 parametric clock and arbitrarily many non-parametric clocks and
integer-valued parameters Beneš et al. [2015]

√
1 parametric clock and arbitrarily many rational-valued parameters Miller [2000]

√
2 parametric clocks and 1 integer-valued parameter Bundala and Ouaknine [2014]

28 / 91

Limiting the number of clocks

Undecidability is achieved for a single parameter Miller [2000]; Beneš et al. [2015]

However, reducing the number of clocks yields decidability of the EF-emptiness
problem:
√

1 parametric clock and arbitrarily many non-parametric clocks and
integer-valued parameters Beneš et al. [2015]

√
1 parametric clock and arbitrarily many rational-valued parameters Miller [2000]

√
2 parametric clocks and 1 integer-valued parameter Bundala and Ouaknine [2014]

28 / 91

Limiting the number of clocks

Undecidability is achieved for a single parameter Miller [2000]; Beneš et al. [2015]

However, reducing the number of clocks yields decidability of the EF-emptiness
problem:
√

1 parametric clock and arbitrarily many non-parametric clocks and
integer-valued parameters Beneš et al. [2015]

√
1 parametric clock and arbitrarily many rational-valued parameters Miller [2000]

√
2 parametric clocks and 1 integer-valued parameter Bundala and Ouaknine [2014]

28 / 91

L/U-PTA

Definition
A lower/upper bound PTA (L/U-PTA) is a PTA in which each parameter p is always
compared with clocks as an upper bound or always as a lower bound.

y ≤ p2

y ≤ 8
start?
x := 0
y := 0

y ≤ p2 ∧ y = 6
cup!

x ≥ p1
sugar?
x :=0

p3 ≤ y ≤ p4
coffee!

Lower-bound parameters:
Upped-bound parameters:

29 / 91

L/U-PTA

Definition
A lower/upper bound PTA (L/U-PTA) is a PTA in which each parameter p is always
compared with clocks as an upper bound or always as a lower bound.

y ≤ p2

y ≤ 8
start?
x := 0
y := 0

y ≤ p2 ∧ y = 6
cup!

x ≥ p1
sugar?
x :=0

p3 ≤ y ≤ p4
coffee!

Lower-bound parameters: p1, p3

Upped-bound parameters:

29 / 91

L/U-PTA

Definition
A lower/upper bound PTA (L/U-PTA) is a PTA in which each parameter p is always
compared with clocks as an upper bound or always as a lower bound.

y ≤ p2

y ≤ 8
start?
x := 0
y := 0

y ≤ p2 ∧ y = 6
cup!

x ≥ p1
sugar?
x :=0

p3 ≤ y ≤ p4
coffee!

Lower-bound parameters: p1, p3

Upped-bound parameters: p2, p4

29 / 91

Decidable problems for L/U-PTA

EF-emptiness problem
“Does there exist a parameter valuation for which a given location l is
reachable?”
decidable Hune et al. [2002]

EF-universality problem
“Do all parameter valuations allow to reach a given location l?”
decidable Bozzelli and La Torre [2009]

EF-finiteness problem
“Is the set of parameter valuations allowing to reach a given location l finite?”
decidable (for integer valuations) Bozzelli and La Torre [2009]

30 / 91

Decidable problems for L/U-PTA

EF-emptiness problem
“Does there exist a parameter valuation for which a given location l is
reachable?”
decidable Hune et al. [2002]

EF-universality problem
“Do all parameter valuations allow to reach a given location l?”
decidable Bozzelli and La Torre [2009]

EF-finiteness problem
“Is the set of parameter valuations allowing to reach a given location l finite?”
decidable (for integer valuations) Bozzelli and La Torre [2009]

30 / 91

Decidable problems for L/U-PTA

EF-emptiness problem
“Does there exist a parameter valuation for which a given location l is
reachable?”
decidable Hune et al. [2002]

EF-universality problem
“Do all parameter valuations allow to reach a given location l?”
decidable Bozzelli and La Torre [2009]

EF-finiteness problem
“Is the set of parameter valuations allowing to reach a given location l finite?”
decidable (for integer valuations) Bozzelli and La Torre [2009]

30 / 91

Undecidable problems for L/U-PTA

AF-emptiness problem
“Does there exist a parameter valuation for which a given location l is always
eventually reachable?”
undecidable Jovanović et al. [2015]

AF-universality problem
“Are all valuations such that a given location l is always eventually
reachable?”
undecidable (but. . .) André and Lime [2016]

language preservation emptiness problem
“Given a parameter valuation v, can we find another valuation with the same
untimed language?”
undecidable André and Markey [2015]

31 / 91

Undecidable problems for L/U-PTA

AF-emptiness problem
“Does there exist a parameter valuation for which a given location l is always
eventually reachable?”
undecidable Jovanović et al. [2015]

AF-universality problem
“Are all valuations such that a given location l is always eventually
reachable?”
undecidable (but. . .) André and Lime [2016]

language preservation emptiness problem
“Given a parameter valuation v, can we find another valuation with the same
untimed language?”
undecidable André and Markey [2015]

31 / 91

Undecidable problems for L/U-PTA

AF-emptiness problem
“Does there exist a parameter valuation for which a given location l is always
eventually reachable?”
undecidable Jovanović et al. [2015]

AF-universality problem
“Are all valuations such that a given location l is always eventually
reachable?”
undecidable (but. . .) André and Lime [2016]

language preservation emptiness problem
“Given a parameter valuation v, can we find another valuation with the same
untimed language?”
undecidable André and Markey [2015]

31 / 91

What can we do with L/U-PTA?

In an L/U PTA, can we syntactically. . .

use an equality (=) in a guard or invariant?

yes (without parameters!)

use an equality x = p in a guard or invariant?

no!

32 / 91

What can we do with L/U-PTA?

In an L/U PTA, can we syntactically. . .

use an equality (=) in a guard or invariant?
yes (without parameters!)

use an equality x = p in a guard or invariant?

no!

32 / 91

What can we do with L/U-PTA?

In an L/U PTA, can we syntactically. . .

use an equality (=) in a guard or invariant?
yes (without parameters!)

use an equality x = p in a guard or invariant?
no!

32 / 91

What fits into the class of L/U-PTA?

Any model with parametric delays given in the form of intervals
E.g.: [pmin, pmax]

Many communication protocols

All hardware circuits modeled using a bi-bounded inertial delay model

33 / 91

Conclusion

Most interesting problems are undecidable for PTA

. . . but some become decidable when bounding the number of clocks, or adding
restrictions on the use of parameters (L/U-PTA)

Let us go for some parameter synthesis algorithms (next sequence)

34 / 91

Conclusion

Most interesting problems are undecidable for PTA

. . . but some become decidable when bounding the number of clocks, or adding
restrictions on the use of parameters (L/U-PTA)

Let us go for some parameter synthesis algorithms (next sequence)

34 / 91

35 / 91

Parameter synthesis algorithms

36 / 91

First of all. . .

You know that:

most problems are undecidable for Parametric Timed Automata

but some are decidable on specific classes

Let us now see some parameter synthesis algorithms

37 / 91

First of all. . .

You know that:

most problems are undecidable for Parametric Timed Automata

but some are decidable on specific classes

Let us now see some parameter synthesis algorithms

37 / 91

Symbolic states for timed automata

Objective: group all concrete states reachable by the same sequence of
discrete actions

Symbolic state: a location l and a (infinite) set of states Z

For timed automata, Z can be represented by a convex polyhedron with a
special form called zone, with constraints

−d0i ≤ xi ≤ di0 and xi − xj ≤ dij

Computation of successive reachable symbolic states can be performed
symbolically with polyhedral operations: for edge e = (l, a, g,R , l′):

Succ((l,Z), e) = (l′, (Z ∩ g)[R] ∩ Inv(l′))↗ ∩ Inv(l′))

With an additional technicality there is a finite number of reachable zones in a
TA.

38 / 91

Symbolic states for timed automata: Example

y ≤ 4 x ≥ 2
y := 0

y

x
{(0, 0)}

Z0 = {(0, 0)}↗ ∩ Inv(•)

y

x

39 / 91

Symbolic states for timed automata: Example

y ≤ 4 x ≥ 2
y := 0

y

x
Z0 = {(0, 0)}↗ ∩ Inv(•)

y

x

39 / 91

Symbolic states for timed automata: Example

y ≤ 4 x ≥ 2
y := 0

y

x
Z0 = {(0, 0)}↗ ∩ Inv(•)

y

x
Z0

39 / 91

Symbolic states for timed automata: Example

y ≤ 4 x ≥ 2
y := 0

y

x
Z0 = {(0, 0)}↗ ∩ Inv(•)

y

x
Z0 ∩ (x ≥ 2)

39 / 91

Symbolic states for timed automata: Example

y ≤ 4 x ≥ 2
y := 0

y

x
Z0 = {(0, 0)}↗ ∩ Inv(•)

y

x
(Z0 ∩ (x ≥ 2))[{y}]

39 / 91

Symbolic states for timed automata: Example

y ≤ 4 x ≥ 2
y := 0

y

x
Z0 = {(0, 0)}↗ ∩ Inv(•)

y

x
Z1 = (Z0 ∩ (x ≥ 2))[{y}]↗

39 / 91

Symbolic states for parametric TA

Symbolic state (l,Z): location + convex polyhedron constraining both clocks
and parameters;

Straightforward extension of reset and future that act only on the clock
variables;

Convex polyhedra obtained have a special form called parametric zone Hune

et al. [2002].

y ≤ p x ≥ q
y := 0

Z0 =


x = y
0 ≤ y ≤ p
p, q ≥ 0

Z1 =


q ≤ x − y ≤ p
(q ≤ p)
x, y, p, q ≥ 0

There exists in general an infinite number of such symbolic states in a PTA

40 / 91

Symbolic states for parametric TA

Symbolic state (l,Z): location + convex polyhedron constraining both clocks
and parameters;

Straightforward extension of reset and future that act only on the clock
variables;

Convex polyhedra obtained have a special form called parametric zone Hune

et al. [2002].

y ≤ p x ≥ q
y := 0

Z0 =


x = y
0 ≤ y ≤ p
p, q ≥ 0

Z1 =


q ≤ x − y ≤ p
(q ≤ p)
x, y, p, q ≥ 0

There exists in general an infinite number of such symbolic states in a PTA

40 / 91

A semi-algorithm for parametric reachability

EFG(S,M) =


Z↓P if l ∈ G
∅ if S ∈ M⋃

e∈E
S′=Succ(S,e)

EFG

(
S′,M ∪ {S}

)
otherwise.

S = (l,Z);

G a set of locations to reach;

M is a list of visited symbolic states;

Succ(S, e) computes the symbolic successor of S by edge e;

EF collects the parametric reachability condition of all symbolic states with a
goal location; Jovanović et al. [2015]

correctness and completeness guaranteed if the algorithm terminates, but. . .

termination is not guaranteed (because the underlying problem is
undecidable)

41 / 91

A semi-algorithm for parametric reachability

EFG(S,M) =


Z↓P if l ∈ G
∅ if S ∈ M⋃

e∈E
S′=Succ(S,e)

EFG

(
S′,M ∪ {S}

)
otherwise.

S = (l,Z);

G a set of locations to reach;

M is a list of visited symbolic states;

Succ(S, e) computes the symbolic successor of S by edge e;

EF collects the parametric reachability condition of all symbolic states with a
goal location; Jovanović et al. [2015]

correctness and completeness guaranteed if the algorithm terminates, but. . .

termination is not guaranteed (because the underlying problem is
undecidable)

41 / 91

Beyond EFSynth

EFSynth is the most basic synthesis semi-algorithm for PTA;

Termination can be ensured, using the notion of integer hull Jovanović et al.

[2015]; André et al. [2015b]:

y

x

at the cost of completeness;
for bounded parameters;
but preserves all integer points.

Similar (semi-)algorithms are also available for more complex properties (e.g.
invevitability Jovanović et al. [2015]);

EFSynth is implemented in IMITATOR and Roméo.

42 / 91

Beyond EFSynth

EFSynth is the most basic synthesis semi-algorithm for PTA;

Termination can be ensured, using the notion of integer hull Jovanović et al.

[2015]; André et al. [2015b]:

y

x

at the cost of completeness;
for bounded parameters;
but preserves all integer points.

Similar (semi-)algorithms are also available for more complex properties (e.g.
invevitability Jovanović et al. [2015]);

EFSynth is implemented in IMITATOR and Roméo.

42 / 91

Beyond EFSynth

EFSynth is the most basic synthesis semi-algorithm for PTA;

Termination can be ensured, using the notion of integer hull Jovanović et al.

[2015]; André et al. [2015b]:

y

x

at the cost of completeness;
for bounded parameters;
but preserves all integer points.

Similar (semi-)algorithms are also available for more complex properties (e.g.
invevitability Jovanović et al. [2015]);

EFSynth is implemented in IMITATOR and Roméo.

42 / 91

TPsynth: preserving the untimed behaviour

The trace preservation problem
Given a PTA A and a parameter valuation v0, synthesize other valuations yielding
the same time-abstract behaviour (trace set). André et al. [2009]; André and Markey [2015]

·v0

43 / 91

TPsynth: preserving the untimed behaviour

The trace preservation problem
Given a PTA A and a parameter valuation v0, synthesize other valuations yielding
the same time-abstract behaviour (trace set). André et al. [2009]; André and Markey [2015]

K0

·v0

43 / 91

TPsynth (“inverse method”): Simplified algorithm

Two parts:

1 Forbid all v0-incompatible behaviours

2 Require all v0-compatible behaviours

Algorithm TPsynth(A, v0):
Start with K0 = true

REPEAT

1 Compute a set S of reachable symbolic states under K0

2 Refine K0 by removing a v0-incompatible state from S
Select a v0-incompatible state (l,C) within S (i.e. v0 6|= C)
Add ¬C↓P to K0

UNTIL no more v0-incompatible state in S

RETURN the intersection of all states

44 / 91

An example of flip-flop circuit

An asynchronous circuit Clarisó and Cortadella [2007]

D

CK

Q

G1

G2

G3

G4

D

CK

Q

Concurrent behaviour
4 elements: G1, G2, G3, G4
2 input signals (D and CK), 1 output signal (Q)

Timing delays
Traversal delays of the gates: one interval per gate

Environment timing constants

Question
For these timing delays, does the rise of Q always occur before the fall of CK?

Timed model checking gives the answer: yes

45 / 91

An example of flip-flop circuit

An asynchronous circuit Clarisó and Cortadella [2007]

D

CK

Q

G1

G2

G3

G4

[7; 7]

[5; 6]
[8; 10]

[3; 7] D

CK

Q

Concurrent behaviour
4 elements: G1, G2, G3, G4
2 input signals (D and CK), 1 output signal (Q)

Timing delays
Traversal delays of the gates: one interval per gate

Environment timing constants

Question
For these timing delays, does the rise of Q always occur before the fall of CK?

Timed model checking gives the answer: yes

45 / 91

An example of flip-flop circuit

An asynchronous circuit Clarisó and Cortadella [2007]

D

CK

Q

G1

G2

G3

G4

[7; 7]

[5; 6]
[8; 10]

[3; 7] D

CK

Q

10 17

15 24

Concurrent behaviour
4 elements: G1, G2, G3, G4
2 input signals (D and CK), 1 output signal (Q)

Timing delays
Traversal delays of the gates: one interval per gate
Environment timing constants

Question
For these timing delays, does the rise of Q always occur before the fall of CK?

Timed model checking gives the answer: yes

45 / 91

An example of flip-flop circuit

An asynchronous circuit Clarisó and Cortadella [2007]

D

CK

Q

G1

G2

G3

G4

[7; 7]

[5; 6]
[8; 10]

[3; 7] D

CK

Q

10 17

15 24

Concurrent behaviour
4 elements: G1, G2, G3, G4
2 input signals (D and CK), 1 output signal (Q)

Timing delays
Traversal delays of the gates: one interval per gate
Environment timing constants

Question
For these timing delays, does the rise of Q always occur before the fall of CK?

Timed model checking gives the answer: yes

45 / 91

An example of flip-flop circuit

An asynchronous circuit Clarisó and Cortadella [2007]

D

CK

Q

G1

G2

G3

G4

[7; 7]

[5; 6]
[8; 10]

[3; 7] D

CK

Q

10 17

15 24

Concurrent behaviour
4 elements: G1, G2, G3, G4
2 input signals (D and CK), 1 output signal (Q)

Timing delays
Traversal delays of the gates: one interval per gate
Environment timing constants

Question
For these timing delays, does the rise of Q always occur before the fall of CK?
Timed model checking gives the answer: yes

45 / 91

Flip-flop circuit: Timing parameters

G02

D

CK

Q

G1

G2

G3

G4

[7 ; 7]

[5 ; 6]
[8 ; 10]

[3 ; 7] D

CK

Q

10 17

15 24

Timing parameters
Traversal delays of the gates: one interval per gate

4 environment parameters: TLO , THI, TSetup and THold

Question: which values of the parameters yield the same untimed behavior
as the reference valuation (and hence for which the rise of Q always occur
before the fall of CK)?

46 / 91

Flip-flop circuit: Timing parameters

G02

D

CK

Q

G1

G2

G3

G4

[δ−1 ; δ+1]

[δ−2 ; δ+2]
[δ−3 ; δ+3]

[δ−4 ; δ+4]
D

CK

Q

TSetup THold

TLO THI

Timing parameters
Traversal delays of the gates: one interval per gate

4 environment parameters: TLO , THI, TSetup and THold

Question: which values of the parameters yield the same untimed behavior
as the reference valuation (and hence for which the rise of Q always occur
before the fall of CK)?

46 / 91

Flip-flop circuit: Timing parameters

G02

D

CK

Q

G1

G2

G3

G4

[δ−1 ; δ+1]

[δ−2 ; δ+2]
[δ−3 ; δ+3]

[δ−4 ; δ+4]
D

CK

Q

TSetup THold

TLO THI

Timing parameters
Traversal delays of the gates: one interval per gate

4 environment parameters: TLO , THI, TSetup and THold

Question: which values of the parameters yield the same untimed behavior
as the reference valuation (and hence for which the rise of Q always occur
before the fall of CK)?

46 / 91

Trace set

Trace set: set of all traces of a PTA

Graphical representation under the form of a tree

(Does not give any information on the branching behavior though)

Example: trace set of the flip-flop circuit for the original valuation v0

D↑ G↓1 CK↑ G↓3 D↓
Q↑

Q↑

D↓

CK↓

CK↓

47 / 91

Trace set

Trace set: set of all traces of a PTA

Graphical representation under the form of a tree

(Does not give any information on the branching behavior though)

Example: trace set of the flip-flop circuit for the original valuation v0

D↑ G↓1 CK↑ G↓3 D↓
Q↑

Q↑

D↓

CK↓

CK↓

47 / 91

Application of TPsynth to the flip-flop circuit

v0 :
δ−1 = 7 δ+1 = 7 THI = 24
δ−2 = 5 δ+2 = 6 TLO = 15
δ−3 = 8 δ+3 = 10 TSetup = 10
δ−4 = 3 δ+4 = 7 THold = 17

K0 = true

TSetup >δ+1 ∧ δ+3 + δ+4 ≥THold

∧ THold >δ+3 ∧ δ+3 + δ+4 <THI
∧ TSetup ≤ TLO ∧ δ−3 + δ−4 ≤THold
∧ δ−1 > 0

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3
∧ . . .

48 / 91

Application of TPsynth to the flip-flop circuit

v0 :
δ−1 = 7 δ+1 = 7 THI = 24
δ−2 = 5 δ+2 = 6 TLO = 15
δ−3 = 8 δ+3 = 10 TSetup = 10
δ−4 = 3 δ+4 = 7 THold = 17

K0 = true

TSetup >δ+1 ∧ δ+3 + δ+4 ≥THold

∧ THold >δ+3 ∧ δ+3 + δ+4 <THI
∧ TSetup ≤ TLO ∧ δ−3 + δ−4 ≤THold
∧ δ−1 > 0

D↑

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3
∧ . . .

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3
∧ . . .

48 / 91

Application of TPsynth to the flip-flop circuit

v0 :
δ−1 = 7 δ+1 = 7 THI = 24
δ−2 = 5 δ+2 = 6 TLO = 15
δ−3 = 8 δ+3 = 10 TSetup = 10
δ−4 = 3 δ+4 = 7 THold = 17

K0 = true

TSetup >δ+1 ∧ δ+3 + δ+4 ≥THold

∧ THold >δ+3 ∧ δ+3 + δ+4 <THI
∧ TSetup ≤ TLO ∧ δ−3 + δ−4 ≤THold
∧ δ−1 > 0

D↑

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3
∧ . . .

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3
∧ . . .

g↓1

TSetup ≤ TLO
∧TSetup ≥ δ

−
1

∧ THold >δ+3
∧ . . .

CK↑

TSetup ≤TLO

∧TSetup ≤ δ
+
1

48 / 91

Application of TPsynth to the flip-flop circuit

v0 :
δ−1 = 7 δ+1 = 7 THI = 24
δ−2 = 5 δ+2 = 6 TLO = 15
δ−3 = 8 δ+3 = 10 TSetup = 10
δ−4 = 3 δ+4 = 7 THold = 17

K0 =
TSetup >δ+1

∧ δ+3 + δ+4 ≥THold

∧ THold >δ+3 ∧ δ+3 + δ+4 <THI
∧ TSetup ≤ TLO ∧ δ−3 + δ−4 ≤THold
∧ δ−1 > 0

D↑

TSetup ≤ TLO

∧TSetup >δ+1

∧ THold >δ+3
∧ . . .

TSetup ≤ TLO

∧TSetup >δ+1

∧ THold >δ+3
∧ . . .

g↓1

TSetup ≤ TLO

∧TSetup >δ+1

∧ THold >δ+3
∧ . . .

CK↑

TSetup ≤TLO

∧TSetup ≤ δ
+
1

48 / 91

Application of TPsynth to the flip-flop circuit

v0 :
δ−1 = 7 δ+1 = 7 THI = 24
δ−2 = 5 δ+2 = 6 TLO = 15
δ−3 = 8 δ+3 = 10 TSetup = 10
δ−4 = 3 δ+4 = 7 THold = 17

K0 =
TSetup >δ+1

∧ δ+3 + δ+4 ≥THold

∧ THold >δ+3 ∧ δ+3 + δ+4 <THI
∧ TSetup ≤ TLO ∧ δ−3 + δ−4 ≤THold
∧ δ−1 > 0

D↑

TSetup ≤ TLO

∧TSetup >δ+1

∧ THold >δ+3
∧ . . .

TSetup ≤ TLO

∧TSetup >δ+1

∧ THold >δ+3
∧ . . .

g↓1

TSetup ≤ TLO

∧TSetup >δ+1

∧ THold >δ+3
∧ . . .

48 / 91

Application of TPsynth to the flip-flop circuit

v0 :
δ−1 = 7 δ+1 = 7 THI = 24
δ−2 = 5 δ+2 = 6 TLO = 15
δ−3 = 8 δ+3 = 10 TSetup = 10
δ−4 = 3 δ+4 = 7 THold = 17

K0 =
TSetup >δ+1

∧ δ+3 + δ+4 ≥THold

∧ THold >δ+3 ∧ δ+3 + δ+4 <THI
∧ TSetup ≤ TLO ∧ δ−3 + δ−4 ≤THold
∧ δ−1 > 0

D↑

TSetup ≤ TLO

∧TSetup >δ+1

∧ THold >δ+3
∧ . . .

TSetup ≤ TLO

∧TSetup >δ+1

∧ THold >δ+3
∧ . . .

g↓1

TSetup ≤ TLO

∧TSetup >δ+1

∧ THold >δ+3
∧ . . .

CK↑

TSetup ≤ TLO

∧TSetup > δ+1

∧ THold >δ+3
∧ . . .

48 / 91

Application of TPsynth to the flip-flop circuit

v0 :
δ−1 = 7 δ+1 = 7 THI = 24
δ−2 = 5 δ+2 = 6 TLO = 15
δ−3 = 8 δ+3 = 10 TSetup = 10
δ−4 = 3 δ+4 = 7 THold = 17

K0 =
TSetup >δ+1

∧ δ+3 + δ+4 ≥THold

∧ THold >δ+3 ∧ δ+3 + δ+4 <THI
∧ TSetup ≤ TLO ∧ δ−3 + δ−4 ≤THold
∧ δ−1 > 0

D↑

TSetup ≤ TLO

∧TSetup >δ+1

∧ THold >δ+3
∧ . . .

TSetup ≤ TLO

∧TSetup >δ+1

∧ THold >δ+3
∧ . . .

g↓1

TSetup ≤ TLO

∧TSetup >δ+1

∧ THold >δ+3
∧ . . .

CK↑

TSetup ≤ TLO

∧TSetup > δ+1

∧ THold >δ+3
∧ . . .

D↓

TSetup ≤TLO

∧TSetup >δ
+
1

∧ THI ≥THold

∧ δ+3 ≥THold

g↓3

TSetup ≤ TLO

∧TSetup > δ+1

∧ THold >δ+3
∧ . . .

48 / 91

Application of TPsynth to the flip-flop circuit

v0 :
δ−1 = 7 δ+1 = 7 THI = 24
δ−2 = 5 δ+2 = 6 TLO = 15
δ−3 = 8 δ+3 = 10 TSetup = 10
δ−4 = 3 δ+4 = 7 THold = 17

K0 =
TSetup >δ+1

∧ δ+3 + δ+4 ≥THold

∧ THold >δ+3

∧ δ+3 + δ+4 <THI
∧ TSetup ≤ TLO ∧ δ−3 + δ−4 ≤THold
∧ δ−1 > 0

D↑

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3

∧ . . .

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3

∧ . . .

g↓1

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3

∧ . . .

CK↑

TSetup ≤ TLO

∧TSetup > δ+1
∧ THold >δ+3

∧ . . .

D↓

TSetup ≤TLO

∧TSetup >δ
+
1

∧ THI ≥THold

∧ δ+3 ≥THold

g↓3

TSetup ≤ TLO

∧TSetup > δ+1
∧ THold >δ+3

∧ . . .

48 / 91

Application of TPsynth to the flip-flop circuit

v0 :
δ−1 = 7 δ+1 = 7 THI = 24
δ−2 = 5 δ+2 = 6 TLO = 15
δ−3 = 8 δ+3 = 10 TSetup = 10
δ−4 = 3 δ+4 = 7 THold = 17

K0 =
TSetup >δ+1

∧ δ+3 + δ+4 ≥THold

∧ THold >δ+3

∧ δ+3 + δ+4 <THI
∧ TSetup ≤ TLO ∧ δ−3 + δ−4 ≤THold
∧ δ−1 > 0

D↑

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3

∧ . . .

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3

∧ . . .

g↓1

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3

∧ . . .

CK↑

TSetup ≤ TLO

∧TSetup > δ+1
∧ THold >δ+3

∧ . . .

g↓3

TSetup ≤ TLO

∧TSetup > δ+1
∧ THold >δ+3

∧ . . .

48 / 91

Application of TPsynth to the flip-flop circuit

v0 :
δ−1 = 7 δ+1 = 7 THI = 24
δ−2 = 5 δ+2 = 6 TLO = 15
δ−3 = 8 δ+3 = 10 TSetup = 10
δ−4 = 3 δ+4 = 7 THold = 17

K0 =
TSetup >δ+1 ∧ δ+3 + δ+4 ≥THold

∧ THold >δ+3 ∧ δ+3 + δ+4 <THI
∧ TSetup ≤ TLO ∧ δ−3 + δ−4 ≤THold
∧ δ−1 > 0

D↑

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3
∧ . . .

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3
∧ . . .

g↓1

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3
∧ . . .

CK↑

TSetup ≤ TLO

∧TSetup > δ+1
∧ THold >δ+3
∧ . . .

g↓3

TSetup ≤ TLO

∧TSetup > δ+1
∧ THold >δ+3
∧ . . .

Q↑

D↓

D↓

Q↑

CK↓

CK↓

48 / 91

Software supporting parametric timed automata

Specification and verification of parametric models using parametric timed
automata are supported by several software tools

HyTech (also hybrid automata) Henzinger et al. [1997]

PHAVer (also hybrid systems) Frehse [2005]

Roméo (based on parametric time Petri nets) Lime et al. [2009]

IMITATOR André et al. [2012]

49 / 91

Conclusion

Two algorithms:

EFsynth: parametric reachability

TPsynth: parametric trace preservation, with a measure of robustness Markey

[2011]

Other algorithms (not presented):

AFsynth: unavoidability synthesis (implemented in Roméo)

Behavioural cartography (implemented in IMITATOR)

. . . but all these algorithms are costly.

Let us see how to improve performances
with distributed algorithms (next sequence)

50 / 91

Conclusion

Two algorithms:

EFsynth: parametric reachability

TPsynth: parametric trace preservation, with a measure of robustness Markey

[2011]

Other algorithms (not presented):

AFsynth: unavoidability synthesis (implemented in Roméo)

Behavioural cartography (implemented in IMITATOR)

. . . but all these algorithms are costly.

Let us see how to improve performances
with distributed algorithms (next sequence)

50 / 91

51 / 91

Towards Distributed Synthesis
Algorithms

52 / 91

First of all. . .

You have seen some synthesis algorithms for PTA addressing:

parametric reachability (EFsynth)

parametric trace preservation (TPsynth)

. . . but all these algorithms are costly.

Let us now see how to improve performances with distributed algorithms

53 / 91

First of all. . .

You have seen some synthesis algorithms for PTA addressing:

parametric reachability (EFsynth)

parametric trace preservation (TPsynth)

. . . but all these algorithms are costly.

Let us now see how to improve performances with distributed algorithms

53 / 91

Why distributed algorithms?

Algorithms for parameter synthesis for PTA are very costly

time

memory

Some reasons:

expensive operations on polyhedra

no known efficient data structure (such as BDDs or DBMs for timed
automata)

Idea: benefit from the power of clusters

Cluster: large set of nodes (computers with their own memory and processor)

Communication between nodes over a network

54 / 91

Why distributed algorithms?

Algorithms for parameter synthesis for PTA are very costly

time

memory

Some reasons:

expensive operations on polyhedra

no known efficient data structure (such as BDDs or DBMs for timed
automata)

Idea: benefit from the power of clusters

Cluster: large set of nodes (computers with their own memory and processor)

Communication between nodes over a network

54 / 91

A first naive approach

Naive approach to distribute EFsynth:

Each node handles a subpart of the parameter domain

Each node launches EFsynth on its parameter domain

Drawback: bad performances if the analysis is much more costly in some
subdomains than in others

55 / 91

A more elaborate master-worker approach

Workers: run a “hybrid” algorithm

PRP: parametric reachability preservation

inspired by both EFsynth (to look for bad valuations) and TPsynth (to only
explore a limited part of the symbolic state space, while “imitating” a
reference valuation)

based on integer points: guarantees the coverage of all integer points (but
rational-valued points may be missing)

Master: responsible for gathering results and distributing reference valuations
(“points”) among workers

56 / 91

Master worker scheme

Master-worker distribution scheme:

Workers: ask the master for a point (integer parameter valuation), calls PRP
on that point, and send the result (constraint) to the master
Master: is responsible for smart repartition of data between the workers

Note: not trivial at all André et al. [2014, 2015a]

57 / 91

Dynamic domain decomposition

Most efficient distributed algorithm (so far!):
“Domain decomposition” scheme

Master
1 initially splits the parameter domain into subdomains and send them to the

workers
2 when a worker has completed its subdomain, the master splits another

subdomain, and sends it to the idle worker

Workers
1 receive the subdomain from the master
2 call PRP on the points of this subdomain
3 send the results (list of constraints) back to the master
4 ask for more work

58 / 91

Domain decomposition: Initial splitting

Prevent choosing close points
Prevent bottleneck phenomenon at the master’s side

Master only responsible for gathering constraints and splitting subdomains

59 / 91

Domain decomposition: Dynamic splitting

Master can balance workload between workers

60 / 91

Implementation in IMITATOR

Implemented in IMITATOR using the MPI paradigm (message passing interface)

Distributed version up to 44 times faster using 128 nodes than the monolithic
EFsynth André et al. [2015a]

61 / 91

Conclusion

First version of distributed algorithms for PTA

What remains to be done. . . ?

Large space for improvement (44 faster with 128 nodes leaves much space
for speedup)

Multi-core parameter synthesis (on a single machine with several processors)

Let us see some tool support (next sequence)

62 / 91

Conclusion

First version of distributed algorithms for PTA

What remains to be done. . . ?

Large space for improvement (44 faster with 128 nodes leaves much space
for speedup)

Multi-core parameter synthesis (on a single machine with several processors)

Let us see some tool support (next sequence)

62 / 91

63 / 91

IMITATOR in a nutshell

64 / 91

First of all. . .

You now know about:

Parametric timed automata

parameter synthesis algorithms

Let us now see some tool support

65 / 91

First of all. . .

You now know about:

Parametric timed automata

parameter synthesis algorithms

Let us now see some tool support

65 / 91

IMITATOR

A tool for modelling and verifying real-time systems with unknown constants
modelled with Parametric Timed Automata

Communication through (strong) broadcast synchronisation
Integer-valued discrete variables
Stopwatches, to model schedulability problems with preemption

Verification
Computation of the symbolic state space
Parametric model checking (using a subset of TCTL)
Language and trace preservation, and robustness analysis
Parametric deadlock-freeness checking
Behavioural cartography

66 / 91

IMITATOR

Under continuous development since 2008 André et al. [2012]

A library of benchmarks

Communication protocols

Schedulability problems

Asynchronous circuits

. . . and more

Free and open source software: Available under the GNU-GPL license

Try it!

www.imitator.fr

67 / 91

www.imitator.fr

IMITATOR

Under continuous development since 2008 André et al. [2012]

A library of benchmarks

Communication protocols

Schedulability problems

Asynchronous circuits

. . . and more

Free and open source software: Available under the GNU-GPL license

Try it!

www.imitator.fr

67 / 91

www.imitator.fr

Some success stories

Modelled and verified an asynchronous memory circuit by
ST-Microelectronics

Project ANR Valmem

Parametric schedulability analysis of a prospective architecture for the flight
control system of the next generation of spacecrafts designed at ASTRIUM
Space Transportation Fribourg et al. [2012]

Solution to a challenge related to a distributed video processing system by
Thales

Formal timing analysis of music scores Fanchon and Jacquemard [2013]

68 / 91

Conclusion

At this stage, you know:

Parametric timed automata

synthesis algorithms for timing parameters

but need for parametric probabilities to capture:

imprecisions

robustness

dimensioning

Let us address Markov chains with parameters (next sequence)

69 / 91

Conclusion

At this stage, you know:

Parametric timed automata

synthesis algorithms for timing parameters

but need for parametric probabilities to capture:

imprecisions

robustness

dimensioning

Let us address Markov chains with parameters (next sequence)

69 / 91

70 / 91

Parametric Interval Markov Chains

71 / 91

First of all. . .

You know about:

parametric timed automata

Need for parametric probabilities to capture:

imprecisions

robustness

dimensioning

Let us now introduce Parametric Interval Markov Chains

72 / 91

First of all. . .

You know about:

parametric timed automata

Need for parametric probabilities to capture:

imprecisions

robustness

dimensioning

Let us now introduce Parametric Interval Markov Chains

72 / 91

First of all. . .

You know about:

parametric timed automata

Need for parametric probabilities to capture:

imprecisions

robustness

dimensioning

Let us now introduce Parametric Interval Markov Chains

72 / 91

Interval

Markov Chains (

I

MCs)

0

1

2

3

4

0.7

0.3

0.5

0.5

0.5

0.5

0

1

0

1

2

3

4

[0, 1]

[0, 1]

[0.5, 1]

[0.3, 0.5]

[0, 0.5]

[0, 0.5]

[0, 0.5]

0.6

1

[0.5, 1]

Implementation (MC) Specification (IMC)

An IMC is consistent if it admits at least one implementation.

73 / 91

Interval Markov Chains (IMCs)

0

1

2

3

4

0.7

0.3

0.5

0.5

0.5

0.5

0

1

0

1

2

3

4

[0, 1]

[0, 1]

[0.5, 1]

[0.3, 0.5]

[0, 0.5]

[0, 0.5]

[0, 0.5]

0.6

1

[0.5, 1]

Implementation (MC)

Specification (IMC)

An IMC is consistent if it admits at least one implementation.

73 / 91

Interval Markov Chains (IMCs)

0

1

2

3

4

0.7

0.3

0.5

0.5

0.5

0.5

0

1

0

1

2

3

4

[0, 1]

[0, 1]

[0.5, 1]

[0.3, 0.5]

[0, 0.5]

[0, 0.5]

[0, 0.5]

0.6

1

[0.5, 1]

Implementation (MC) Specification (IMC)

An IMC is consistent if it admits at least one implementation.

73 / 91

Interval Markov Chains (IMCs)

0

1

2

3

4

0.7

0.3

0.5

0.5

0.5

0.5

0

1

0

1

2

3

4

[0, 1]

[0, 1]

[0.5, 1]

[0.3, 0.5]

[0, 0.5]

[0, 0.5]

[0, 0.5]

0.6

1

[0.5, 1]

Implementation (MC) Specification (IMC)

An IMC is consistent if it admits at least one implementation.

73 / 91

Parametric Interval Markov Chains (pIMCs)

0

1

2

3

4

[0, 1]

[0, 1]

[q, 1]

[0.3, q]

[0, q]

[0, p]

[0, 0.5]

[p, 0.3]

1

[0.5, p]

Valuating the parameters of I with valuation v gives an IMC v(I)

74 / 91

n-consistency for IMCs

Definition
State s in an IMC is 0-consistent if there exists a probability distribution over
the successors of s that matches the intervals;
State s in an IMC is n-consistent (n ≥ 1) if:

1 there exists a probability distribution ρ over the successors of s that matches the
intervals and

2 the successors s′ such that ρ(s′) > 0 are (n − 1)-consistent.

Theorem
An IMC with N states is consistent iff its initial state is N-consistent.

75 / 91

n-consistency for IMCs

Definition
State s in an IMC is 0-consistent if there exists a probability distribution over
the successors of s that matches the intervals;
State s in an IMC is n-consistent (n ≥ 1) if:

1 there exists a probability distribution ρ over the successors of s that matches the
intervals and

2 the successors s′ such that ρ(s′) > 0 are (n − 1)-consistent.

Theorem
An IMC with N states is consistent iff its initial state is N-consistent.

75 / 91

n-consistency for IMCs: first example

0

1

2

3

4

0

0

0

0

⊥

1

1

1

1

⊥

∗

∗

∗

∗

⊥

[0, 1]

[0, 1]

[0.5, 1]

[0.3, 0.5]

[0, 0.5]

[0, 0.5]

[0, 0.5]

[0, 0.5]

0.6

1

[0.5, 1]

76 / 91

n-consistency for IMCs: first example

0

1

2

3

4

0

0

0

0

⊥

1

1

1

1

⊥

∗

∗

∗

∗

⊥

[0, 1]

[0, 1]

[0.5, 1]

[0.3, 0.5]

[0, 0.5]

[0, 0.5]

[0, 0.5]

[0, 0.5]

0.6

1

[0.5, 1]

76 / 91

n-consistency for IMCs: first example

0

1

2

3

4

0

0

0

0

⊥

1

1

1

1

⊥

∗

∗

∗

∗

⊥

[0, 1]

[0, 1]

[0.5, 1]

[0.3, 0.5]

[0, 0.5]

[0, 0.5]

[0, 0.5]

[0, 0.5]

0.6

1

[0.5, 1]

76 / 91

n-consistency for IMCs: second example

0 1 2

0 0 ⊥

1 0 ⊥

[0, 1]

[0, 1]

[0.5, 1]

[0.5, 1]

[0.5, 1] [0, 0.5] [0.3, 0.4]

[0, 0.5]

77 / 91

n-consistency for IMCs: second example

0 1 2

0 0 ⊥

1 0 ⊥

[0, 1]

[0, 1] [0.5, 1]

[0.5, 1]

[0.5, 1] [0, 0.5] [0.3, 0.4]

[0, 0.5]

77 / 91

n-consistency for IMCs: second example

0 1 2

0 0 ⊥

1 0 ⊥

[0, 1]

[0, 1]

[0.5, 1]

[0.5, 1]

[0.5, 1] [0, 0.5] [0.3, 0.4]

[0, 0.5]

77 / 91

Conclusion

At this stage:

you have an idea on Parametric Interval Markov Chains . . .

you know how to check consistency for IMCs

Let us see how to check consistency in PIMCs (next sequence)

78 / 91

Conclusion

At this stage:

you have an idea on Parametric Interval Markov Chains . . .

you know how to check consistency for IMCs

Let us see how to check consistency in PIMCs (next sequence)

78 / 91

79 / 91

Checking Consistency in Parametric
Interval Markov Chains

80 / 91

First of all. . .

You know about:

the Parametric Interval Markov Chains model

checking consistency for IMCs

Consistency problem for PIMCs:

Does there exists a parameter valuation v such that IMC v(I) is consistent?

Is IMC v(I) consistent for all parameter valuations v?

Compute all parameter valuations v such that IMC v(I) is consistent

Let us now see how to check consistency in PIMCs

81 / 91

First of all. . .

You know about:

the Parametric Interval Markov Chains model

checking consistency for IMCs

Consistency problem for PIMCs:

Does there exists a parameter valuation v such that IMC v(I) is consistent?

Is IMC v(I) consistent for all parameter valuations v?

Compute all parameter valuations v such that IMC v(I) is consistent

Let us now see how to check consistency in PIMCs

81 / 91

First of all. . .

You know about:

the Parametric Interval Markov Chains model

checking consistency for IMCs

Consistency problem for PIMCs:

Does there exists a parameter valuation v such that IMC v(I) is consistent?

Is IMC v(I) consistent for all parameter valuations v?

Compute all parameter valuations v such that IMC v(I) is consistent

Let us now see how to check consistency in PIMCs

81 / 91

n-consistency constraints for pIMCs

Local consistency constraint for state s wrt. some subset S′ of its
successors:

LC(s,S′) =

∑
s′∈S′
Up(s, s′) ≥ 1

 ∩ ∑
s′∈S′
Low(s, s′) ≤ 1


∩

 ⋂
s′∈S′
Low(s, s′) ≤ Up(s, s′)



82 / 91

n-consistency constraints for pIMCs

n-consistency constraint for s given some cut-off successors:
ConsX

0 (s) = LC(s, Succ(s) \ X) ∩ [
⋂

s′∈X Low(s, s′) = 0]

and for n ≥ 1,

ConsX
n (s) =

 ⋂
s′∈Succ(s)\X

Consn−1(s′)

 ∩ [LC(s, Succ(s) \ X)]

∩

⋂
s′∈X

Low(s, s′) = 0


n-consistency constraint for s:

Consn(s) =
⋃

X⊆Z(s)

ConsX
n (s)

Z(s) contains the successors of s for which Low is either 0 or a parameter

83 / 91

Consistency for pIMCs

Theorem (Delahaye et al. [2016])
Given a pIMC I with N states and initial state s0, and a parameter valuation v:

v(I) is consistent iff v ∈ ConsN(s0)

84 / 91

Consistency for PIMCs: a detailed example

0

1

2

3

4

[0, 1]

[0, 1]

[q, 1]

[0.3, q]
1

[0, q]

[0, 1]

[q, 1]

[0.3, q]

[0, p]

1

[0, 0.5]

[p, 0.3]

[0.5, p]

[0, 0.5]

[p, 0.3]

[0.5, p]

[0, 1]

[0, p]

[0, 0.5]

[(q ≤ 0.7) ∩ (q ≥ 0.3)] ∪ (q = 1)

85 / 91

Consistency for PIMCs: a detailed example

0

1

2

3

4

[0, 1]

[0, 1]

[q, 1]

[0.3, q]
1

[0, q]

[0, 1]

[q, 1]

[0.3, q]

[0, p]

1

[0, 0.5]

[p, 0.3]

[0.5, p]

[0, 0.5]

[p, 0.3]

[0.5, p]

[0, 1]

[0, p]

[0, 0.5]

[(q ≤ 0.7) ∩ (q ≥ 0.3)] ∪ (q = 1)

85 / 91

Consistency for PIMCs: a detailed example

0

1

2

3

4

[0, 1][0, 1]

[q, 1]

[0.3, q]
1

[0, q]

[0, 1]

[q, 1]

[0.3, q]

[0, p]

1

[0, 0.5]

[p, 0.3]

[0.5, p]

[0, 0.5]

[p, 0.3]

[0.5, p]

[0, 1]

[0, p]

[0, 0.5]

[(q ≤ 0.7) ∩ (q ≥ 0.3)] ∪ (q = 1)

85 / 91

Conclusion

At this stage:

you know about parametric timed automata, their problems and algorithms

you know about interval Markov chains with parametric probabilities

Let us practice with IMITATOR

86 / 91

Conclusion

At this stage:

you know about parametric timed automata, their problems and algorithms

you know about interval Markov chains with parametric probabilities

Let us practice with IMITATOR

86 / 91

87 / 91

Bibliography

88 / 91

References I

Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theoretical Computer Science, 126(2):183–235.

Alur, R., Henzinger, T. A., and Vardi, M. Y. (1993). Parametric real-time reasoning. In STOC, pages 592–601. ACM.

André, É. (2015). What’s decidable about parametric timed automata? In Formal Techniques for Safety-Critical
Systems - Fourth International Workshop, FTSCS 2015, Paris, France, pages 52–68.

André, É., Chatain, Th., Encrenaz, E., and Fribourg, L. (2009). An inverse method for parametric timed automata.
International Journal on Foundations of Computer Science, 20(5):819–836.

André, É., Coti, C., and Evangelista, S. (2014). Distributed behavioral cartography of timed automata. In Dongarra,
J., Ishikawa, Y., and Atsushi, H., editors, 21st European MPI Users’ Group Meeting (EuroMPI/ASIA’14), pages
109–114. ACM.

André, É., Coti, C., and Nguyen, H. G. (2015a). Enhanced distributed behavioral cartography of parametric timed
automata. In Butler, M., Conchon, S., and Zaïdi, F., editors, Proceedings of the 17th International Conference on
Formal Engineering Methods (ICFEM’15), Lecture Notes in Computer Science. Springer.

André, É., Fribourg, L., Kühne, U., and Soulat, R. (2012). IMITATOR 2.5: A tool for analyzing robustness in
scheduling problems. In FM, volume 7436 of Lecture Notes in Computer Science, pages 33–36. Springer.

André, É. and Lime, D. (2016). Liveness in L/U-parametric timed automata. Submitted.

André, É., Lime, D., and Roux, O. H. (2015b). Integer-complete synthesis for bounded parametric timed automata. In
RP, volume 9058 of Lecture Notes in Computer Science. Springer.

André, É., Lime, D., and Roux, O. H. (2016). Decision problems for parametric timed automata. Technical report.

André, É. and Markey, N. (2015). Language preservation problems in parametric timed automata. In FORMATS,
volume 9268 of Lecture Notes in Computer Science, pages 27–43. Springer.

Beneš, N., Bezděk, P., Larsen, K. G., and Srba, J. (2015). Language emptiness of continuous-time parametric timed
automata. In ICALP, Part II, volume 9135 of Lecture Notes in Computer Science, pages 69–81. Springer.

89 / 91

References II
Bozzelli, L. and La Torre, S. (2009). Decision problems for lower/upper bound parametric timed automata. Formal

Methods in System Design, 35(2):121–151.

Bundala, D. and Ouaknine, J. (2014). Advances in parametric real-time reasoning. In MFCS, volume 8634 of Lecture
Notes in Computer Science, pages 123–134. Springer.

Clarisó, R. and Cortadella, J. (2007). The octahedron abstract domain. Science of Computer Programming,
64(1):115–139.

Delahaye, B., Lime, D., and Petrucci, L. (2016). Parameter synthesis for parametric interval Markov chains. In Proc.
of the 17th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI’16), St.
Petersburg, Florida, USA, volume 9583, pages 372–390. Springer.

Fanchon, L. and Jacquemard, F. (2013). Formal timing analysis of mixed music scores. In ICMC 2013 (International
Computer Music Conference).

Frehse, G. (2005). Phaver: Algorithmic verification of hybrid systems past HyTech. In Hybrid Systems: Computation
and Control, 8th International Workshop, HSCC 2005, Zurich, Switzerland, pages 258–273.

Fribourg, L., Lesens, D., Moro, P., and Soulat, R. (2012). Robustness analysis for scheduling problems using the
inverse method. In TIME’12, pages 73–80. IEEE Computer Society Press.

Henzinger, T. A., Ho, P.-H., and Wong-Toi, H. (1997). HyTech: A model checker for hybrid systems. Software Tools for
Technology Transfer, 1:110–122.

Hune, T., Romijn, J., Stoelinga, M., and Vaandrager, F. W. (2002). Linear parametric model checking of timed
automata. Journal of Logic and Algebraic Programming, 52-53:183–220.

Jovanović, A., Lime, D., and Roux, O. H. (2015). Integer parameter synthesis for timed automata. IEEE Transactions
on Software Engineering, 41(5):445–461.

Lime, D., Roux, O. H., Seidner, C., and Traonouez, L.-M. (2009). Romeo: A parametric model-checker for Petri nets
with stopwatches. In TACAS, volume 5505 of Lecture Notes in Computer Science, pages 54–57. Springer.

Markey, N. (2011). Robustness in real-time systems. In SIES, pages 28–34. IEEE Computer Society Press.

Miller, J. S. (2000). Decidability and complexity results for timed automata and semi-linear hybrid automata. In HSCC,
volume 1790 of Lecture Notes in Computer Science, pages 296–309. Springer.

90 / 91

91 / 91

