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General Introduction
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First of all. . .

You know about automata and/or Petri nets:

about their structure

about their behaviour

some analysis techniques

Nice means to model and analyse concurrent systems. . .

. . . but . . .

need for tuning the model

need for parametrisation

Let us have a deeper look into this now
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Why parameters and of what kind?

Why parameters?
1 several copies of a same process or component, dimensioning, e.g.:

sensors in a wireless sensor network
2 multiple a priori possible actions, e.g.:

modelling different design choices
3 several hardware characteristics, e.g.:

different response time of electronic components

What kind of parameters?
1 instances numbering
2 enabled/disabled actions
3 time or probabilities
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Modelling languages: PN, automata and their extensions

Usual modelling languages are not sufficient:

numbering possible with CPN, but fixed a priori

no specific handling of (un)controllable actions

timing included in TA or TPN, but also fixed
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Problems of interest

model parts of interest with parameters

find some constraints on parameters guaranteeing desired properties

find all parameter values guaranteeing these properties
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Conclusion

At this stage:

you have an idea on parametric modelling issues
instances
(un)controllable actions
time or probability constraints

. . . and problems to address

Let us start with timing parameters (next sequence)
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Parametric Timed Automata: Basic
definitions and examples
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First of all. . .

You have an idea on:

parametric modelling issues
instances
(un)controllable actions
time or probability constraints

problems to address

Let us introduce timing parameters now
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Timed automaton (TA)

Finite state automaton (sets of locations

and actions

)

augmented with a set X
of clocks Alur and Dill [1994]

Real-valued variables evolving linearly at the same rate

Can be compared to integer constants in invariants

and guards

Features

Location invariant: property to be verified to stay at a location
Transition guard: property to be verified to enable a transition
Clock reset: some of the clocks can be set to 0 at each transition
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Concrete semantics of timed automata

Concrete state of a TA: pair (l,w), where

l is a location,
w is a valuation of each clock

Concrete run: alternating sequence of concrete states and actions or time
elapse
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Examples of concrete runs

y ≤ 5
y ≤ 8

start?
x := 0
y := 0

y = 5
cup!

x ≥ 1
sugar?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

0
0

x
y

Coffee with 2 doses of sugar

0
0

x
y

16 / 91



Examples of concrete runs

y ≤ 5
y ≤ 8

start?
x := 0
y := 0

y = 5
cup!

x ≥ 1
sugar?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

0
0

x
y

15.4
15.4

0
0

5
5

5
5

8
8

8
8

15.4 start? 5 cup! 3 coffee!

Coffee with 2 doses of sugar

0
0

x
y

16 / 91



Examples of concrete runs

y ≤ 5
y ≤ 8

start?
x := 0
y := 0

y = 5
cup!

x ≥ 1
sugar?
x := 0

y = 8
coffee!

Possible concrete runs for the coffee machine

Coffee with no sugar

0
0

x
y

15.4
15.4

0
0

5
5

5
5

8
8

8
8

15.4 start? 5 cup! 3 coffee!

Coffee with 2 doses of sugar

0
0

x
y

0
0

1.5
1.5

0
1.5

2.7
4.2

0
4.2

0.8
5

0.8
5

3.8
8

3.8
8

start? 1.5 sugar? 2.7 sugar? 0.8 cup! 3 coffee!

16 / 91



Verification of (timed) properties

y ≤ 5
y ≤ 8

start?
x := 0
y := 0

y =5
cup!

x ≥ 1
sugar?
x :=0

y =8
coffee!

Decide whether the following properties are satisfied for the timed coffee vending
machine

“Once the cup is delivered, coffee will come next within 2 seconds.”

“It is possible to get a coffee with 5 doses of sugar.”

“After the start button is pressed, a coffee is always eventually delivered.”

“It is impossible to press the sugar button twice within 1 second.”
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Why timing parameters?

Challenge 1: systems incompletely specified
Some delays may not be known yet, or may change

Challenge 2: Robustness Markey [2011]

What happens if 8 is implemented with 7.99?
Can I really get a coffee with 5 doses of sugar?

Challenge 3: Optimisation of timing constants
Up to which value of the delay between two actions sugar? can I still order a
coffee with 3 doses of sugar?

Challenge 4: Avoid numerous verifications
If one of the timing delays of the model changes, should I model check again the
whole system?

A solution: Parametric analysis
Consider that timing constants are unknown (parameters)
Find good values for the parameters s.t. the system behaves well
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Parametric Timed Automaton (PTA)

Timed automaton (sets of locations, actions and clocks)

augmented with a
set P of parameters Alur et al. [1993]

Unknown constants compared to a clock in guards and invariants
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y =8
coffee!
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Parametric Timed Automaton (PTA)

Timed automaton (sets of locations, actions and clocks) augmented with a
set P of parameters Alur et al. [1993]

Unknown constants compared to a clock in guards and invariants

y ≤ p2

y ≤ 8
start?
x := 0
y := 0

y =p2
cup!

x ≥ p1
sugar?
x :=0

y =p3
coffee!
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Conclusion

At this stage:

you have an idea on Parametric Timed Automata

and the challenges for parametric analysis

Let us go for decidability results (next sequence)
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Decidability results for Parametric
Timed Automata
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First of all. . .

You have an idea on:

Parametric Timed Automata

the challenges for parametric analysis

Let us now see some decidability results
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What is decidability?

A decision problem is decidable if one can design an algorithm that, for any input
of the problem, can answer yes or no (in a finite time, with a finite memory).

Examples:

“given three integers, is one of them the product of the other two?”

“given a timed automaton, does there exist a run from the initial state to a
given location l?”

“given a context-free grammar, does it generate all strings?”

“given a Turing machine, will it eventually halt?”
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Why studying decidability?

If a decision problem is undecidable, it is hopeless to look for algorithms yielding
exact solutions for computation problems (because that is impossible)

However, one can:

design semi-algorithms: if the algorithm halts, then its result is correct

design algorithms yielding over- or under-approximations
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Decision and computation problems for PTA

EF-Emptiness “Does there exist a parameter valuation for which a given
location l is reachable?”
Example: “Does there exist at least one parameter valuation for which I can
get a coffee with 2 sugars?”

√
, e.g. p1 = 1, p2 = 5, p3 = 8

EF-Universality “Do all parameter valuations allow to reach a given
location l?”
Example: “Are all parameter valuations such that I may eventually get a
coffee?”

×, e.g. p1 = 1, p2 = 5, p3 = 2

Preservation of the untimed language “Given a parameter valuation, does
there exist another valuation with the same untimed language?”
Example: “Given the valuation p1 = 1, p2 = 5, p3 = 8, do there exist other
valuations with the same possible untimed behaviours?”

√

EF-Synthesis “Find all parameter valuations for which a given location l is
reachable”
Example: “What are all parameter valuations such that one may eventually
get a coffee?”

0 ≤ p2 ≤ p3 ≤ 8
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Decidability for PTA

EF-emptiness problem
“Does there exist a parameter valuation for which a given location l is
reachable?”
undecidable Alur et al. [1993]; Beneš et al. [2015]

EF-universality problem
“Do all parameter valuations allow to reach a given location l?”
undecidable André et al. [2016]

Preservation of the untimed language
“Given a parameter valuation, does there exist another valuations with the
same untimed language?”
undecidable André and Markey [2015]

In fact most interesting problems for PTAs are undecidable André [2015]
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Limiting the number of clocks

Undecidability is achieved for a single parameter Miller [2000]; Beneš et al. [2015]

However, reducing the number of clocks yields decidability of the EF-emptiness
problem:

√
1 parametric clock and arbitrarily many non-parametric clocks and
integer-valued parameters Beneš et al. [2015]

√
1 parametric clock and arbitrarily many rational-valued parameters Miller [2000]

√
2 parametric clocks and 1 integer-valued parameter Bundala and Ouaknine [2014]
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L/U-PTA

Definition
A lower/upper bound PTA (L/U-PTA) is a PTA in which each parameter p is always
compared with clocks as an upper bound or always as a lower bound.

y ≤ p2

y ≤ 8
start?
x := 0
y := 0

y ≤ p2 ∧ y = 6
cup!

x ≥ p1
sugar?
x :=0

p3 ≤ y ≤ p4
coffee!

Lower-bound parameters:
Upped-bound parameters:
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Decidable problems for L/U-PTA

EF-emptiness problem
“Does there exist a parameter valuation for which a given location l is
reachable?”
decidable Hune et al. [2002]

EF-universality problem
“Do all parameter valuations allow to reach a given location l?”
decidable Bozzelli and La Torre [2009]

EF-finiteness problem
“Is the set of parameter valuations allowing to reach a given location l finite?”
decidable (for integer valuations) Bozzelli and La Torre [2009]
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Undecidable problems for L/U-PTA

AF-emptiness problem
“Does there exist a parameter valuation for which a given location l is always
eventually reachable?”
undecidable Jovanović et al. [2015]

AF-universality problem
“Are all valuations such that a given location l is always eventually
reachable?”
undecidable (but. . . ) André and Lime [2016]

language preservation emptiness problem
“Given a parameter valuation v, can we find another valuation with the same
untimed language?”
undecidable André and Markey [2015]
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What can we do with L/U-PTA?

In an L/U PTA, can we syntactically. . .

use an equality (=) in a guard or invariant?

yes (without parameters!)

use an equality x = p in a guard or invariant?

no!
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What fits into the class of L/U-PTA?

Any model with parametric delays given in the form of intervals
E.g.: [pmin, pmax ]

Many communication protocols

All hardware circuits modeled using a bi-bounded inertial delay model

33 / 91



Conclusion

Most interesting problems are undecidable for PTA

. . . but some become decidable when bounding the number of clocks, or adding
restrictions on the use of parameters (L/U-PTA)

Let us go for some parameter synthesis algorithms (next sequence)
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Parameter synthesis algorithms
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First of all. . .

You know that:

most problems are undecidable for Parametric Timed Automata

but some are decidable on specific classes

Let us now see some parameter synthesis algorithms
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Symbolic states for timed automata

Objective: group all concrete states reachable by the same sequence of
discrete actions

Symbolic state: a location l and a (infinite) set of states Z

For timed automata, Z can be represented by a convex polyhedron with a
special form called zone, with constraints

−d0i ≤ xi ≤ di0 and xi − xj ≤ dij

Computation of successive reachable symbolic states can be performed
symbolically with polyhedral operations: for edge e = (l, a, g,R , l′):

Succ((l,Z), e) = (l′, (Z ∩ g)[R] ∩ Inv(l′))↗ ∩ Inv(l′))

With an additional technicality there is a finite number of reachable zones in a
TA.
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Symbolic states for timed automata: Example

y ≤ 4 x ≥ 2
y := 0

y

x
{(0, 0)}

Z0 = {(0, 0)}↗ ∩ Inv(•)

y

x
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Symbolic states for timed automata: Example

y ≤ 4 x ≥ 2
y := 0

y

x
Z0 = {(0, 0)}↗ ∩ Inv(•)

y

x
Z1 = (Z0 ∩ (x ≥ 2))[{y}]↗
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Symbolic states for parametric TA

Symbolic state (l,Z): location + convex polyhedron constraining both clocks
and parameters;

Straightforward extension of reset and future that act only on the clock
variables;

Convex polyhedra obtained have a special form called parametric zone Hune

et al. [2002].

y ≤ p x ≥ q
y := 0

Z0 =


x = y
0 ≤ y ≤ p
p, q ≥ 0

Z1 =


q ≤ x − y ≤ p
(q ≤ p)
x, y, p, q ≥ 0

There exists in general an infinite number of such symbolic states in a PTA
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A semi-algorithm for parametric reachability

EFG(S,M) =


Z↓P if l ∈ G
∅ if S ∈ M⋃

e∈E
S′=Succ(S,e)

EFG

(
S′,M ∪ {S}

)
otherwise.

S = (l,Z);

G a set of locations to reach;

M is a list of visited symbolic states;

Succ(S, e) computes the symbolic successor of S by edge e;

EF collects the parametric reachability condition of all symbolic states with a
goal location; Jovanović et al. [2015]

correctness and completeness guaranteed if the algorithm terminates, but. . .

termination is not guaranteed (because the underlying problem is
undecidable)
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Beyond EFSynth

EFSynth is the most basic synthesis semi-algorithm for PTA;

Termination can be ensured, using the notion of integer hull Jovanović et al.

[2015]; André et al. [2015b]:

y

x

at the cost of completeness;
for bounded parameters;
but preserves all integer points.

Similar (semi-)algorithms are also available for more complex properties (e.g.
invevitability Jovanović et al. [2015]);

EFSynth is implemented in IMITATOR and Roméo.
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TPsynth: preserving the untimed behaviour

The trace preservation problem
Given a PTA A and a parameter valuation v0, synthesize other valuations yielding
the same time-abstract behaviour (trace set). André et al. [2009]; André and Markey [2015]

·v0
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TPsynth (“inverse method”): Simplified algorithm

Two parts:

1 Forbid all v0-incompatible behaviours

2 Require all v0-compatible behaviours

Algorithm TPsynth(A, v0):
Start with K0 = true

REPEAT

1 Compute a set S of reachable symbolic states under K0

2 Refine K0 by removing a v0-incompatible state from S
Select a v0-incompatible state (l,C) within S (i.e. v0 6|= C)
Add ¬C↓P to K0

UNTIL no more v0-incompatible state in S

RETURN the intersection of all states
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An example of flip-flop circuit

An asynchronous circuit Clarisó and Cortadella [2007]

D

CK

Q

G1

G2

G3

G4

D

CK

Q

Concurrent behaviour
4 elements: G1, G2, G3, G4
2 input signals (D and CK ), 1 output signal (Q)

Timing delays
Traversal delays of the gates: one interval per gate

Environment timing constants

Question
For these timing delays, does the rise of Q always occur before the fall of CK?

Timed model checking gives the answer: yes
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Flip-flop circuit: Timing parameters

G02

D

CK

Q

G1

G2

G3

G4

[ 7 ; 7 ]

[ 5 ; 6 ]
[ 8 ; 10 ]

[ 3 ; 7 ] D

CK

Q

10 17

15 24

Timing parameters
Traversal delays of the gates: one interval per gate

4 environment parameters: TLO , THI, TSetup and THold

Question: which values of the parameters yield the same untimed behavior
as the reference valuation (and hence for which the rise of Q always occur
before the fall of CK )?
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Trace set

Trace set: set of all traces of a PTA

Graphical representation under the form of a tree

(Does not give any information on the branching behavior though)

Example: trace set of the flip-flop circuit for the original valuation v0

D↑ G↓1 CK↑ G↓3 D↓
Q↑

Q↑

D↓

CK↓

CK↓
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Application of TPsynth to the flip-flop circuit

v0 :
δ−1 = 7 δ+1 = 7 THI = 24
δ−2 = 5 δ+2 = 6 TLO = 15
δ−3 = 8 δ+3 = 10 TSetup = 10
δ−4 = 3 δ+4 = 7 THold = 17

K0 = true

TSetup >δ+1 ∧ δ+3 + δ+4 ≥THold

∧ THold >δ+3 ∧ δ+3 + δ+4 <THI
∧ TSetup ≤ TLO ∧ δ−3 + δ−4 ≤THold
∧ δ−1 > 0

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3
∧ . . .
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D↑

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3

∧ . . .

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3

∧ . . .

g↓1

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3

∧ . . .

CK↑

TSetup ≤ TLO

∧TSetup > δ+1
∧ THold >δ+3

∧ . . .

g↓3

TSetup ≤ TLO

∧TSetup > δ+1
∧ THold >δ+3

∧ . . .
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δ−3 = 8 δ+3 = 10 TSetup = 10
δ−4 = 3 δ+4 = 7 THold = 17

K0 =
TSetup >δ+1 ∧ δ+3 + δ+4 ≥THold

∧ THold >δ+3 ∧ δ+3 + δ+4 <THI
∧ TSetup ≤ TLO ∧ δ−3 + δ−4 ≤THold
∧ δ−1 > 0

D↑

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3
∧ . . .

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3
∧ . . .

g↓1

TSetup ≤ TLO

∧TSetup >δ+1
∧ THold >δ+3
∧ . . .

CK↑

TSetup ≤ TLO

∧TSetup > δ+1
∧ THold >δ+3
∧ . . .

g↓3

TSetup ≤ TLO

∧TSetup > δ+1
∧ THold >δ+3
∧ . . .

Q↑

D↓

D↓

Q↑

CK↓

CK↓
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Software supporting parametric timed automata

Specification and verification of parametric models using parametric timed
automata are supported by several software tools

HyTech (also hybrid automata) Henzinger et al. [1997]

PHAVer (also hybrid systems) Frehse [2005]

Roméo (based on parametric time Petri nets) Lime et al. [2009]

IMITATOR André et al. [2012]
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Conclusion

Two algorithms:

EFsynth: parametric reachability

TPsynth: parametric trace preservation, with a measure of robustness Markey

[2011]

Other algorithms (not presented):

AFsynth: unavoidability synthesis (implemented in Roméo)

Behavioural cartography (implemented in IMITATOR)

. . . but all these algorithms are costly.

Let us see how to improve performances
with distributed algorithms (next sequence)
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Towards Distributed Synthesis
Algorithms
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First of all. . .

You have seen some synthesis algorithms for PTA addressing:

parametric reachability (EFsynth)

parametric trace preservation (TPsynth)

. . . but all these algorithms are costly.

Let us now see how to improve performances with distributed algorithms
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Why distributed algorithms?

Algorithms for parameter synthesis for PTA are very costly

time

memory

Some reasons:

expensive operations on polyhedra

no known efficient data structure (such as BDDs or DBMs for timed
automata)

Idea: benefit from the power of clusters

Cluster: large set of nodes (computers with their own memory and processor)

Communication between nodes over a network
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A first naive approach

Naive approach to distribute EFsynth:

Each node handles a subpart of the parameter domain

Each node launches EFsynth on its parameter domain

Drawback: bad performances if the analysis is much more costly in some
subdomains than in others
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A more elaborate master-worker approach

Workers: run a “hybrid” algorithm

PRP: parametric reachability preservation

inspired by both EFsynth (to look for bad valuations) and TPsynth (to only
explore a limited part of the symbolic state space, while “imitating” a
reference valuation)

based on integer points: guarantees the coverage of all integer points (but
rational-valued points may be missing)

Master: responsible for gathering results and distributing reference valuations
(“points”) among workers
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Master worker scheme

Master-worker distribution scheme:

Workers: ask the master for a point (integer parameter valuation), calls PRP
on that point, and send the result (constraint) to the master
Master: is responsible for smart repartition of data between the workers

Note: not trivial at all André et al. [2014, 2015a]
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Dynamic domain decomposition

Most efficient distributed algorithm (so far!):
“Domain decomposition” scheme

Master
1 initially splits the parameter domain into subdomains and send them to the

workers
2 when a worker has completed its subdomain, the master splits another

subdomain, and sends it to the idle worker

Workers
1 receive the subdomain from the master
2 call PRP on the points of this subdomain
3 send the results (list of constraints) back to the master
4 ask for more work
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Domain decomposition: Initial splitting

Prevent choosing close points
Prevent bottleneck phenomenon at the master’s side

Master only responsible for gathering constraints and splitting subdomains
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Domain decomposition: Dynamic splitting

Master can balance workload between workers
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Implementation in IMITATOR

Implemented in IMITATOR using the MPI paradigm (message passing interface)

Distributed version up to 44 times faster using 128 nodes than the monolithic
EFsynth André et al. [2015a]
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Conclusion

First version of distributed algorithms for PTA

What remains to be done. . . ?

Large space for improvement (44 faster with 128 nodes leaves much space
for speedup)

Multi-core parameter synthesis (on a single machine with several processors)

Let us see some tool support (next sequence)
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IMITATOR in a nutshell
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First of all. . .

You now know about:

Parametric timed automata

parameter synthesis algorithms

Let us now see some tool support
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IMITATOR

A tool for modelling and verifying real-time systems with unknown constants
modelled with Parametric Timed Automata

Communication through (strong) broadcast synchronisation
Integer-valued discrete variables
Stopwatches, to model schedulability problems with preemption

Verification
Computation of the symbolic state space
Parametric model checking (using a subset of TCTL)
Language and trace preservation, and robustness analysis
Parametric deadlock-freeness checking
Behavioural cartography
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IMITATOR

Under continuous development since 2008 André et al. [2012]

A library of benchmarks

Communication protocols

Schedulability problems

Asynchronous circuits

. . . and more

Free and open source software: Available under the GNU-GPL license

Try it!

www.imitator.fr
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Some success stories

Modelled and verified an asynchronous memory circuit by
ST-Microelectronics

Project ANR Valmem

Parametric schedulability analysis of a prospective architecture for the flight
control system of the next generation of spacecrafts designed at ASTRIUM
Space Transportation Fribourg et al. [2012]

Solution to a challenge related to a distributed video processing system by
Thales

Formal timing analysis of music scores Fanchon and Jacquemard [2013]
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Conclusion

At this stage, you know:

Parametric timed automata

synthesis algorithms for timing parameters

but need for parametric probabilities to capture:

imprecisions

robustness

dimensioning

Let us address Markov chains with parameters (next sequence)

69 / 91



Conclusion

At this stage, you know:

Parametric timed automata

synthesis algorithms for timing parameters

but need for parametric probabilities to capture:

imprecisions

robustness

dimensioning

Let us address Markov chains with parameters (next sequence)

69 / 91



70 / 91



Parametric Interval Markov Chains
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First of all. . .

You know about:

parametric timed automata

Need for parametric probabilities to capture:

imprecisions

robustness

dimensioning

Let us now introduce Parametric Interval Markov Chains
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Interval

Markov Chains (

I

MCs)
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Implementation (MC) Specification (IMC)

An IMC is consistent if it admits at least one implementation.
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Interval Markov Chains (IMCs)
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Parametric Interval Markov Chains (pIMCs)
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Valuating the parameters of I with valuation v gives an IMC v(I)
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n-consistency for IMCs

Definition
State s in an IMC is 0-consistent if there exists a probability distribution over
the successors of s that matches the intervals;
State s in an IMC is n-consistent (n ≥ 1) if:

1 there exists a probability distribution ρ over the successors of s that matches the
intervals and

2 the successors s′ such that ρ(s′) > 0 are (n − 1)-consistent.

Theorem
An IMC with N states is consistent iff its initial state is N-consistent.
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n-consistency for IMCs: first example
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n-consistency for IMCs: second example
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Conclusion

At this stage:

you have an idea on Parametric Interval Markov Chains . . .

you know how to check consistency for IMCs

Let us see how to check consistency in PIMCs (next sequence)
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Checking Consistency in Parametric
Interval Markov Chains
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First of all. . .

You know about:

the Parametric Interval Markov Chains model

checking consistency for IMCs

Consistency problem for PIMCs:

Does there exists a parameter valuation v such that IMC v(I) is consistent?

Is IMC v(I) consistent for all parameter valuations v?

Compute all parameter valuations v such that IMC v(I) is consistent

Let us now see how to check consistency in PIMCs
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n-consistency constraints for pIMCs

Local consistency constraint for state s wrt. some subset S′ of its
successors:

LC(s,S′) =

∑
s′∈S′
Up(s, s′) ≥ 1

 ∩ ∑
s′∈S′
Low(s, s′) ≤ 1


∩

 ⋂
s′∈S′
Low(s, s′) ≤ Up(s, s′)


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n-consistency constraints for pIMCs

n-consistency constraint for s given some cut-off successors:
ConsX

0 (s) = LC(s, Succ(s) \ X) ∩ [
⋂

s′∈X Low(s, s′) = 0]

and for n ≥ 1,

ConsX
n (s) =

 ⋂
s′∈Succ(s)\X

Consn−1(s′)

 ∩ [LC(s, Succ(s) \ X)]

∩

⋂
s′∈X

Low(s, s′) = 0


n-consistency constraint for s:

Consn(s) =
⋃

X⊆Z(s)

ConsX
n (s)

Z(s) contains the successors of s for which Low is either 0 or a parameter
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Consistency for pIMCs

Theorem (Delahaye et al. [2016])
Given a pIMC I with N states and initial state s0, and a parameter valuation v:

v(I) is consistent iff v ∈ ConsN(s0)
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Consistency for PIMCs: a detailed example
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Conclusion

At this stage:

you know about parametric timed automata, their problems and algorithms

you know about interval Markov chains with parametric probabilities

Let us practice with IMITATOR
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