
Petri Nets Tutorial, Parametric Verification
(session 3)

Étienne André, Didier Lime, Wojciech Penczek, Laure Petrucci

Etienne.Andre@lipn.univ-paris13.fr LIPN, Université Paris 13
Didier.Lime@ec-nantes.fr IRCCyN, École Centrale de Nantes
penczek@ipipan.waw.pl IPI-PAN, Warsaw

Laure.Petrucci@lipn.univ-paris13.fr LIPN, Université Paris 13

June 21st, 2016

1 / 68

Thanks

Thanks for their support to...

project PACS ANR-14-CE28-0002
IPI-PAN, IRCCyN, LIPN

and of course...

All the developers of the tools

2 / 68

Outline

Petri Nets with Parameters
Parametric Petri Nets.
Parametric Time Petri Nets.
Roméo in a nutshell.

Action synthesis
Model.
SPATULA in a nutshell.

3 / 68

4 / 68

Parametric Petri Nets

5 / 68

First of all. . .

You now know about:

parametric timed automata

synthesis of timing parameters

interval Markov chains with parameters

Let us now see Parametric Petri nets

6 / 68

First of all. . .

You now know about:

parametric timed automata

synthesis of timing parameters

interval Markov chains with parameters

Let us now see Parametric Petri nets

6 / 68

Petri nets

p1

p1

p2

p2

p3

p3

p4

p4

t2

2

t1

3

7 / 68

Petri nets

p1

p1

p2

p2

p3

p4

p4

t2

2

t1

3

7 / 68

Petri nets

p1

p2p3

p4

t2

2

t1

3

7 / 68

Petri Nets with Parameters David et al. [2015]

a

p1

p2p3

p4

t2

2

t1

a

b

initial marking: number of processes, initial value of a semaphore, etc.

pre weights: number of processes to synchronise, number of items to take,
etc.

post weights: number of processes to spawn, number of items to give, etc.

8 / 68

The problem of Coverability

Definition (Coverability)
Given a marking m, does there exist a reachable marking m′ such that m′ ≥ m

Coverability is EXPSPACE-complete in Petri nets;

It is equivalent to knowing if some transition can fire;

This includes many safety properties.

9 / 68

The problem of Coverability

Definition (Coverability)
Given a marking m, does there exist a reachable marking m′ such that m′ ≥ m

Coverability is EXPSPACE-complete in Petri nets;

It is equivalent to knowing if some transition can fire;

This includes many safety properties.

9 / 68

Coverability: Example

p1

p1

p2

p2

p3

p3

p4

p4

t2

2

t1

3

Some markings that can be covered:

(0, 0, 0, 0) − (1, 1, 1, 0) − (0, 1, 1, 1)

Some markings that cannot be covered:

(1, 0, 0, 1) − (2, 0, 1, 0) − (0, 4, 0, 0)

10 / 68

Coverability: Example

p1

p1

p2

p2

p3

p4

p4

t2

2

t1

3

Some markings that can be covered:

(0, 0, 0, 0) − (1, 1, 1, 0) − (0, 1, 1, 1)

Some markings that cannot be covered:

(1, 0, 0, 1) − (2, 0, 1, 0) − (0, 4, 0, 0)

10 / 68

Coverability: Example

p1

p2p3

p4

t2

2

t1

3

Some markings that can be covered:

(0, 0, 0, 0) − (1, 1, 1, 0) − (0, 1, 1, 1)

Some markings that cannot be covered:

(1, 0, 0, 1) − (2, 0, 1, 0) − (0, 4, 0, 0)

10 / 68

Coverability in Parametric Petri Nets

Definition (E-cov: Existential Coverability)
Is some given marking coverable for at least one parameter valuation?

Definition (U-cov: Universal Coverability)
Is some given marking coverable for all the parameter valuations?

11 / 68

Parametric Coverability is Undecidable

Theorem
E-cov and U-cov are undecidable for parametric Petri nets.

They can simulate 2-counter machines:

two counters C1,C2,

states P = {p0, ...pm}, a terminal state labelled halt
finite list of instructions l1, ..., ls among the following list:

increment a counter and go to lj
if the counter is positive decrement it and go to lj
if the counter is null go to li else go to lj

Counters are always non negative.

12 / 68

An Example of 2-Counter Machine

in p1 : C1 := C1 + 1; goto p2;
in p2 : C2 := C2 + 1; goto p1;

Successive configurations:

(p1,C1 = 0,C2 = 0)→ (p2,C1 = 1,C2 = 0)→ (p1,C1 = 1,C2 = 1)
→ (p2,C1 = 2,C2 = 1)→ ...

13 / 68

Simulation of a 2-Counters Machine

The halting problem (whether some state halt of the machine is reachable)
can be reduced to E-cov;

The counters boundedness problem (whether the counters values stay in a
finite set) can be reduced to U-cov;

Both problems are undecidable for 2-counter machines Minsky [1967].
From any machineM, we build a parametric Petri net NM encoding it such
that:

M halts iff there exists a parameter valuation v such that place phalt is coverable
in v(NM).
a counter ofM is unbounded iff for all parameter valuations v, place perror is
coverable in v(NM).

14 / 68

Simulation of Instructions

C1

¬C1

π

pi

pj

error

a

C1++

θ

a

C1 ¬C1

π

pi pj

C1- -

θ

a

C1 ¬C1

π

pi pj

pk

0

a

a
¬0

θ

a

incrementation
of a counter

decrementation
of a counter

zero test of
a counter

By construction, m(C1) + m(¬C1) = a

15 / 68

Decidable Subclasses: A Hierarchy of Parametric PNs

PPN

PPN

T-PPN

T-PPN

P-PPN

distinctT-PPN

preT-PPN postT-PPN

PN

PN

⊆

⊆

⊆

⊆⊆

⊆

⊆

⊆

⊆

16 / 68

Decidable Subclasses: A Hierarchy of Parametric PNs

PPN

T-PPN P-PPN

distinctT-PPN

preT-PPN postT-PPN

PN
⊆

⊆

⊆

⊆⊆

⊆

⊆ ⊆

16 / 68

From Markings to Output Weights

p1

a

p2

b

p3

p4

t

p1 p2

π

p3

p4

t

θ
1 b

a
replacement of the
P parameters by

postT parameters

17 / 68

From Markings to Output Weights

p1

a

p2

b

p3

p4

t

p1 ap2

π

bp3

p4

t

θ
1 b

a
replacement of the
P parameters by

postT parameters

17 / 68

From Output Weights to Markings

p

t
a

πt ,1

p

πt ,p,2

a

πt ,p,1

πt ,2

t

θt

θt ,p,2θt ,p,1

replacement of the
postT parameters
by P parameters

18 / 68

From Output Weights to Markings

p

t
a

πt ,1

p

πt ,p,2

a

πt ,p,1

πt ,2

t

θt

θt ,p,2θt ,p,1

replacement of the
postT parameters
by P parameters

18 / 68

From Output Weights to Markings

p

t
a

πt ,1

ap a

πt ,p,2

πt ,p,1

πt ,2

t

θt

θt ,p,2θt ,p,1

replacement of the
postT parameters
by P parameters

18 / 68

From Output Weights to Markings

p

t
a

πt ,1

ap a

πt ,p,2

πt ,p,1

πt ,2

t

θt

θt ,p,2θt ,p,1

replacement of the
postT parameters
by P parameters

18 / 68

From Output Weights to Markings

p

t
a

πt ,1

ap

πt ,p,2

a

πt ,p,1

πt ,2

t

θt

θt ,p,2θt ,p,1

replacement of the
postT parameters
by P parameters

18 / 68

Decidable Subclasses: A Hierarchy of Parametric PNs

PPN

T-PPN P-PPN

distinctT-PPN

preT-PPN postT-PPN

PN
⊆

⊆

⊆

⊆⊆

⊆

⊆ ⊆

v

∼

Caption:

: is a syntactical subclass of

: is a weak-bisimulation subclass of

: is a weak-cosimulation subclass of

⊆

v

∼

19 / 68

From Parametric Markings to Classic Petri Nets

for U-cov: all parameters to 0 is the worst case ;

for E-cov:

ap p

π

unlocked

inject

unlock

to every transition
in the original net

replacement
of the P pa-

rameters by a
token injector

20 / 68

Decidable Subclasses: A Hierarchy of Parametric PNs

PPN

T-PPN P-PPN

P-PPN

distinctT-PPN

preT-PPN postT-PPN

postT-PPN

PN
⊆

⊆

⊆

⊆⊆

⊆

⊆ ⊆

v

∼

Caption:

: is a syntactical subclass of

: is a weak-bisimulation subclass of

: is a weak-cosimulation subclass of

⊆

v

∼

21 / 68

Decidable Subclasses: A Hierarchy of Parametric PNs

PPN

T-PPN P-PPN

distinctT-PPN

preT-PPN postT-PPN

postT-PPN

PN
⊆

⊆

⊆

⊆⊆

⊆

⊆ ⊆

v

∼

Caption:

: is a syntactical subclass of

: is a weak-bisimulation subclass of

: is a weak-cosimulation subclass of

⊆

v

∼

21 / 68

Decidable Subclasses: A Hierarchy of Parametric PNs

PPN

T-PPN P-PPN

distinctT-PPN

preT-PPN postT-PPN

PN
⊆

⊆

⊆

⊆⊆

⊆

⊆ ⊆

v

∼

Caption:

: is a syntactical subclass of

: is a weak-bisimulation subclass of

: is a weak-cosimulation subclass of

⊆

v

∼

21 / 68

Deciding Coverability with Parametric Input Weights

p t

a

for E-cov: all parameters to 0 is the best case;
for U-cov:

extend the coverability tree construction of Karp & Miller Karp and Miller [1969]
consider that a transition with a parametric input weight can fire only if the
corresponding place can become unbounded (i.e. has an ω marking).

22 / 68

Decidable Subclasses: A Hierarchy of Parametric PNs

PPN

T-PPN P-PPN

distinctT-PPN

distinctT-PPN

preT-PPN

preT-PPN

postT-PPN

PN
⊆

⊆

⊆

⊆⊆

⊆

⊆ ⊆

v

∼

Caption:

: is a syntactical subclass of

: is a weak-bisimulation subclass of

: is a weak-cosimulation subclass of

⊆

v

∼

23 / 68

Decidable Subclasses: A Hierarchy of Parametric PNs

PPN

T-PPN P-PPN

distinctT-PPN

distinctT-PPN

preT-PPN postT-PPN

PN
⊆

⊆

⊆

⊆⊆

⊆

⊆ ⊆

v

∼

Caption:

: is a syntactical subclass of

: is a weak-bisimulation subclass of

: is a weak-cosimulation subclass of

⊆

v

∼

23 / 68

Decidable Subclasses: A Hierarchy of Parametric PNs

PPN

T-PPN P-PPN

distinctT-PPN

preT-PPN postT-PPN

PN
⊆

⊆

⊆

⊆⊆

⊆

⊆ ⊆

v

∼

Caption:

: is a syntactical subclass of

: is a weak-bisimulation subclass of

: is a weak-cosimulation subclass of

⊆

v

∼

23 / 68

Conclusion

Parametric Petri Nets are an expressive but undecidable model;

There are interesting and still expressive decidable subclasses;

For those subclasses, parametric coverability is EXPSPACE-complete (no
upper bound for U − cov for input weights)

The problem of synthesis is still open.

Let us now see how timing parameters can be introduced in (time) Petri Nets

24 / 68

Conclusion

Parametric Petri Nets are an expressive but undecidable model;

There are interesting and still expressive decidable subclasses;

For those subclasses, parametric coverability is EXPSPACE-complete (no
upper bound for U − cov for input weights)

The problem of synthesis is still open.

Let us now see how timing parameters can be introduced in (time) Petri Nets

24 / 68

25 / 68

Parametric Time Petri Nets

26 / 68

First of all. . .

You now know about:

Parametric Petri nets

Decidability issues

Let us now review Parametric Time Petri nets

27 / 68

First of all. . .

You now know about:

Parametric Petri nets

Decidability issues

Let us now review Parametric Time Petri nets

27 / 68

Parametric Time Petri Nets (PTPNs)

p0 p1

t0[0, 1] t1[2,+∞[

p2

28 / 68

Parametric Time Petri Nets (PTPNs)

p0 p1

t0[a, b] t1[2,+∞[

p2

28 / 68

Undecidability Results for Parametric TPNs

We have a structural translation from timed automata to bounded time Petri
nets preserving timed language (implying state reachability) Bérard et al. [2013]

Has one gadget per simple constraint in guards and timing constants appear
explicitly;

It extends trivially to parameterized guards.

Theorem
The EF-emptiness problem is undecidable for bounded parametric time Petri nets.

29 / 68

Decidability Results for Parametric TPNs

We also have structural translations the other way round (preserving almost
everything); Bérard et al. [2013]

All decidability results carry over to parametric Petri nets;

The symbolic state abstraction presented earlier can also be defined for
PTPNs; Gardey et al. [2006]

EFSynth and similar algorithms can be used as is for PTPNs!

But TPNs enjoy a “better” symbolic abstraction: Berthomieu & Menasche’s
State Classes. Berthomieu and Menasche [1983]; Berthomieu and Diaz [1991]

30 / 68

State Classes for Time Petri Nets

State classes also regroup states obtained with the same discrete transition
sequence in a pair (l,Z) where Z is a zone;

But states record time to firing instead of time elapsed;

p0 p1

t0[1, 4] t1[2, 3]

p2

Initially:{
1 ≤ t0 ≤ 4
2 ≤ t1 ≤ 3

Fire t0:
1 ≤ t0 ≤ 4
2 ≤ t1 ≤ 3
t0 ≤ t1

New times to fire:
1 ≤ t0 ≤ 4
2 ≤ t ′1 + t0 ≤ 3
t0 ≤ t ′1 + t0

Disabled (incl. t0):{
0 ≤ t ′1 ≤ 2

Newly enabled:{
1 ≤ t0 ≤ 4
0 ≤ t1 ≤ 2

31 / 68

State Classes for Parametric Time Petri Nets

Successive state classes computations are done with classic polyhedral
operations;

They can be extended to account for timing parameters Traonouez et al. [2009]:

p0 p1

t0[a, 4] t1[2, b]

p2

Initially:{
a ≤ t0 ≤ 4
2 ≤ t1 ≤ b

Fire t0:
a ≤ t0 ≤ 4
2 ≤ t1 ≤ b
t0 ≤ t1
(a ≤ b)

New times to fire:
a ≤ t0 ≤ 4
2 ≤ t ′1 + t0 ≤ b
t0 ≤ t ′1 + t0

Disabled (incl. t0):{
0 ≤ t ′1 ≤ b − a

Newly enabled:{
a ≤ t0 ≤ 4
0 ≤ t1 ≤ b − a

32 / 68

Synthesis for Parametric TPNs

EFSynth works the same with parametric state classes;

EFG(S,M) =


Z↓P if l ∈ G
∅ if S ∈ M⋃

t∈T
S′=Next(S,t)

EFG

(
S ′,M ∪ {S}

)
otherwise.

We can also do synthesis for inevitability Jovanović et al. [2015]:

AFG(S,M) =


Z↓P if l ∈ G
∅ if S ∈ M(⋂

t∈T
S′=Next(S,t)

(
AFG

(
S ′,M ∪ {S}

)
∪ (QP \ S ′↓P)

))
otherwise

S = (l,Z);

G a set of markings to reach;

M is a list of visited state classes;

Next(S, t) computes the state class successor of S by transition t ;

termination is not guaranteed.

33 / 68

AF: Cutting for More

p0t1[0,∞)
p1 t2[1, 2a]

p2

Put a token in p1: no constraint

Put a token in p2: a ≥ 1
2

Ensuring both paths are possible (for AF (p1 > 0 or p2 > 0)): a ≥ 1
2

Or we can cut t2 and p2 off with a < 1
2 and the property is satisfied with no

further constraint

Finally, AF (p1 > 0 or p2 > 0) is satisfied for all values of a.

34 / 68

Symbolic Synthesis for Bounded Integers

EF-emptiness is undecidable for integer parameters Alur et al. [1993];

It is undecidable for bounded rational parameters Miller [2000];
It is PSPACE-complete for bounded integer parameters Jovanović et al. [2015].

non-deterministically guess a parameter valuation and store it (polynomial
storage size);
instantiate the PTA or PTPN and solve the problem (PSPACE);
PSPACE = NPSPACE (Savitch’s theorem).

Synthesis can be done symbolically, using integer hulls:
y

x

35 / 68

Symbolic Synthesis for Bounded Integer Parameters

IEF computes polyhedra containing exactly the “good” integer parameter
valuations:

IEFG(S,M) =


Z↓P if l ∈ G
∅ if S ∈ M⋃

t∈T
S′=IH(Next(S,t))

IEFG

(
S ′,M ∪ {S}

)
otherwise.

It is guaranteed to terminate when the parameters are bounded;

AF can be modified similarly.

36 / 68

Density of the Results

The question:
the result of IEF or IAF is a union of convex polyhedra;
we know that these sets contain exactly the “good” integer valuations;
but what of the non-integer valuations in those polyhedra?

The short answer:
they are all “good” for IEF (but we can do a bit better);
they are in general not all “good” for IAF (and we can do a bit better).

37 / 68

The Result of IAF is not Dense

p0t1[0,∞)
p1 t2[1, 2a]

p2

To ensure AF (p1 > 0), cut t2 and p2, i.e., take a < 1
2 ;

When p2 is marked, Z2 = {1 ≤ x ∧ 1 ≤ 2a}, so IH(C2) = {1 ≤ x ∧ 1 ≤ a}

So, to cut (p2 = 1, IH(Z2)), we need a < 1.
1
2 ≤ a < 1 are not “good” valuations.

38 / 68

Integer-preserving Dense Underapproximations

In IAF, we cut off not enough states because IH(Z) ⊆ Z ;
Solution: use integer hulls only for convergence André et al. [2015]:

RIEFG(S,M) =


Z↓P if l ∈ G
∅ if IH(S) ∈ M⋃

t∈T
S′=Next(S,t)

EFG

(
S ′,M ∪ {IH(S)}

)
otherwise.

RIAFG(S,M) =


Z↓P if l ∈ G
∅ if IH(S) ∈ M(⋂

t∈T
S′=Next(S,t)

(
AFG

(
S ′,M ∪ {IH(S)}

)
∪ (QP \ S ′↓P)

))
otherwise

Gives a “dense” underapproximation containing at least all integer valuations.

39 / 68

Dense Integer-preserving Underapproxations

p0t1[0,∞)
p1 t2[1, 2a]

p2

AF l1: a < 1
2 instead of (erroneous) a < 1 for IAF

EF l2: a ≥ 1
2 instead of a ≥ 1 for IEF

40 / 68

Conclusion

Time Petri nets are well-suited to timing parametrization;

Bounded PTPNs globally have the same decidability results as PTA;

Synthesis (semi-)algorithms for PTA can be adapted for PTPN (and are
sometimes a bit simpler);

They can use state classes;

General synthesis is hard and approximate/partial synthesis is a good way to
address this problem;

Roméo is a tool that supports parametric TPNs (next sequence)

41 / 68

Conclusion

Time Petri nets are well-suited to timing parametrization;

Bounded PTPNs globally have the same decidability results as PTA;

Synthesis (semi-)algorithms for PTA can be adapted for PTPN (and are
sometimes a bit simpler);

They can use state classes;

General synthesis is hard and approximate/partial synthesis is a good way to
address this problem;

Roméo is a tool that supports parametric TPNs (next sequence)

41 / 68

42 / 68

Roméo in a nutshell

43 / 68

First of all . . .

You know that:

Time Petri nets are well-suited to timing parametrization;

Bounded PTPNs globally have the same decidability results as PTA;

Synthesis (semi-)algorithms for PTA can be adapted for PTPN (and are
sometimes a bit simpler);

They can use state classes;

General synthesis is hard and approximate/partial synthesis is a good way to
address this problem;

Roméo is a tool that supports parametric TPNs

44 / 68

First of all . . .

You know that:

Time Petri nets are well-suited to timing parametrization;

Bounded PTPNs globally have the same decidability results as PTA;

Synthesis (semi-)algorithms for PTA can be adapted for PTPN (and are
sometimes a bit simpler);

They can use state classes;

General synthesis is hard and approximate/partial synthesis is a good way to
address this problem;

Roméo is a tool that supports parametric TPNs

44 / 68

Roméo

An analysis tool / model-checker for time Petri nets with
timing parameters;
hybrid extensions;
discrete variables;

Developed at Nantes since 2000, mostly by Olivier H. Roux and Didier Lime;

Tool papers Gardey et al. [2005]; Lime et al. [2009]

Free and open-source (CeCILL license)

Available at http://romeo.rts-software.org/

45 / 68

http://romeo.rts-software.org/

Conclusion

At this stage, you know about:

Petri nets with discrete parameters

time Petri nets with timing parameters

Let us address synthesis of actions (next sequence)

46 / 68

Conclusion

At this stage, you know about:

Petri nets with discrete parameters

time Petri nets with timing parameters

Let us address synthesis of actions (next sequence)

46 / 68

47 / 68

Action Synthesis

48 / 68

First of all. . .

You know about:

Petri nets with discrete parameters

time Petri nets with timing parameters

Let us now address synthesis of actions

49 / 68

First of all. . .

You know about:

Petri nets with discrete parameters

time Petri nets with timing parameters

Let us now address synthesis of actions

49 / 68

Mixed Transition Systems (MTS)

MTS: Kripke structures with action-labelled transitions

MTS (model) is a 5-tupleM = (S, s0,A,T ,L), where:

S – a set of states,

s0 ∈ S – the initial state,

A – a set of actions,

T ⊆ S ×A × S – a labelled transition relation,

PV – a set of the propositional variables,

L : S → 2PV – a labelling function.

A path π inM is a maximal sequence s0a0s1a1... of states and actions such that
(si , ai , si+1) ∈ T .

50 / 68

Allowed and disabled actions

p

s0

p

s1

safe s2

safe

s3

p

s4

act1

act4

act2

act2

act3

act4

A ⊆ A – a set of allowed actions

Π(A , s) – the maximal paths over A , starting from s

E.g., Π({act1, act2, act4}, s0) =
{(s0act1s1act4)ω + (s0act1s1act4)∗s0act1s1act2s3 + (s0act1s1act4)∗s0act2s2}

51 / 68

Allowed and disabled actions

p

s0

p

s1

safe s2

safe

s3

p

s4

act1

act4

act2

act2

act3

act4

A ⊆ A – a set of allowed actions

Π(A , s) – the maximal paths over A , starting from s

E.g., Π({act1, act2, act4}, s0) =
{(s0act1s1act4)ω + (s0act1s1act4)∗s0act1s1act2s3 + (s0act1s1act4)∗s0act2s2}

51 / 68

Parametric ARCTL

pmARCTL: CTL with actions/variable subscripts

ActSets – non-empty subsets of A
ActVars – the action variables

pmARCTL: the formulae φ generated by the BNF grammar:

φ ::= p | ¬φ | φ ∨ φ | EαXφ | EαGφ | Eα(φ U φ)

p ∈ PV, α ∈ ActSets ∪ ActVars

Eα – “there exists a maximal path over α”

X ,G,U – neXt, Globally, Until

(derived) Aα – “for each maximal path over α”

(derived) F – “in the future”

52 / 68

Parametric ARCTL

pmARCTL: CTL with actions/variable subscripts

ActSets – non-empty subsets of A
ActVars – the action variables

pmARCTL: the formulae φ generated by the BNF grammar:

φ ::= p | ¬φ | φ ∨ φ | EαXφ | EαGφ | Eα(φ U φ)

p ∈ PV, α ∈ ActSets ∪ ActVars

Eα – “there exists a maximal path over α”

X ,G,U – neXt, Globally, Until

(derived) Aα – “for each maximal path over α”

(derived) F – “in the future”

52 / 68

Parametric ARCTL: semantics

States:

Labelled by p

Labelled by q

Properties:

s0 |= E{forward,left}Gp
s0 |= E{forward,right}pUq

More examples:

EY GEY X true – infinite loops
detection

AY GEY X true – deadlock detection

AGY (p ∧ EFZ safe) – using two
action variables Y ,Z

s0

s1

s2s3

s2

s2

...

s1

s2

...
s3

... ...

forward

rightleft

loop

loop

forward

rightleft

53 / 68

Parametric ARCTL: semantics

States:

Labelled by p

Labelled by q

Properties:

s0 |= E{forward,left}Gp

s0 |= E{forward,right}pUq

More examples:

EY GEY X true – infinite loops
detection

AY GEY X true – deadlock detection

AGY (p ∧ EFZ safe) – using two
action variables Y ,Z

s0

s1

s2s3

s2

s2

...

s1

s2

...
s3

... ...

forward

rightleft

loop

loop

forward

rightleft

53 / 68

Parametric ARCTL: semantics

States:

Labelled by p

Labelled by q

Properties:

s0 |= E{forward,left}Gp
s0 |= E{forward,right}pUq

More examples:

EY GEY X true – infinite loops
detection

AY GEY X true – deadlock detection

AGY (p ∧ EFZ safe) – using two
action variables Y ,Z

s0

s1

s2s3

s2

s2

...

s1

s2

...
s3

... ...

forward

rightleft

loop

loop

forward

rightleft

53 / 68

Parametric ARCTL: semantics

States:

Labelled by p

Labelled by q

Properties:

s0 |= E{forward,left}Gp
s0 |= E{forward,right}pUq

More examples:

EY GEY X true – infinite loops
detection

AY GEY X true – deadlock detection

AGY (p ∧ EFZ safe) – using two
action variables Y ,Z

s0

s1

s2s3

s2

s2

...

s1

s2

...
s3

... ...

forward

rightleft

loop

loop

forward

rightleft

53 / 68

Action synthesis in a nutshell

p

s0

p

s1

safe s2

safe

s3

p

s4

act1

act4

act2

act2

act3

act4

AY G(p ∧ EZ Fsafe): for each Y-reachable state p holds and safe is Z-reachable

54 / 68

Action synthesis in a nutshell

p

s0

p

s1

safe s2

safe

s3

p

s4

act1

act4

act2

act2

act3

act4

AY G(p ∧ EZ Fsafe): for each Y-reachable state p holds and safe is Z-reachable

s0 |= A{act1, act4}G(p ∧ E{act2}Fsafe)

54 / 68

Action synthesis in a nutshell

p

s0

p

s1

safe s2

safe

s3

p

s4

act1

act4

act2

act2

act3

act4

AY G(p ∧ EZ Fsafe): for each Y-reachable state p holds and safe is Z-reachable

s0 |= A{act1, act4}G(p ∧ E{act2}Fsafe)

54 / 68

Action synthesis in a nutshell

p

s0

p

s1

safe s2

safe

s3

p

s4

act1

act4

act2

act2

act3

act4

AY G(p ∧ EZ Fsafe): for each Y-reachable state p holds and safe is Z-reachable

s0 |= A{act1, act4}G(p ∧ E{act2}Fsafe)

54 / 68

Action synthesis in a nutshell

p

s0

p

s1

safe s2

safe

s3

p

s4

act1

act4

act2

act2

act3

act4

AY G(p ∧ EZ Fsafe): for each Y-reachable state p holds and safe is Z-reachable

s0 6|= A{act1, act3}G(p ∧ E{act2}Fsafe)

54 / 68

Action synthesis in a nutshell

p

s0

p

s1

safe s2

safe

s3

p

s4

act1

act4

act2

act2

act3

act4

AY G(p ∧ EZ Fsafe): for each Y-reachable state p holds and safe is Z-reachable

Goal: describe all Y ,Z s.t.: s0 |= AY G(p ∧ EZ Fsafe)

54 / 68

Action synthesis: formal definition

M = (S, s0,A,T ,L), φ ∈ pmARCTL, ActVals := ActSetsActVars

Goal Knapik et al. [2015]

Build fφ : S → 2ActVals s.t. for all s ∈ S:

υ ∈ fφ(s) ⇐⇒ s |=υ φ

(fφ(s) contains all valuations that make φ hold in s)

THEOREM
The problem of deciding whether fφ(s) , ∅ is NP-complete.

55 / 68

(Some) fixed-points for pmARCTL

Recursive equivalences in pmARCTL:

q |=υ EY Gφ ⇐⇒ q |=υ φ ∧
(
EY XEY Gφ ∨ ¬EY X true

)

Explanation: φ holds along a maximal path starting at q and labelled with a
Y–action iff φ holds in q and either there is no outgoing Y–action (deadlock)
or there is a Y–action s.t. when fired it leads to a state where EY Gφ holds

EYφUψ ⇐⇒ ψ ∨ (φ ∧ EY XEYφUψ)

Implementation:

easy algorithms: implement EY X and compute fixpoints (using BDDs)

similar to CTL, but deal with indicator functions rather than with sets of states

56 / 68

(Some) fixed-points for pmARCTL

Recursive equivalences in pmARCTL:

q |=υ EY Gφ ⇐⇒ q |=υ φ ∧
(
EY XEY Gφ ∨ ¬EY X true

)
Explanation: φ holds along a maximal path starting at q and labelled with a
Y–action iff φ holds in q and either there is no outgoing Y–action (deadlock)
or there is a Y–action s.t. when fired it leads to a state where EY Gφ holds

EYφUψ ⇐⇒ ψ ∨ (φ ∧ EY XEYφUψ)

Implementation:

easy algorithms: implement EY X and compute fixpoints (using BDDs)

similar to CTL, but deal with indicator functions rather than with sets of states

56 / 68

(Some) fixed-points for pmARCTL

Recursive equivalences in pmARCTL:

q |=υ EY Gφ ⇐⇒ q |=υ φ ∧
(
EY XEY Gφ ∨ ¬EY X true

)
Explanation: φ holds along a maximal path starting at q and labelled with a
Y–action iff φ holds in q and either there is no outgoing Y–action (deadlock)
or there is a Y–action s.t. when fired it leads to a state where EY Gφ holds

EYφUψ ⇐⇒ ψ ∨ (φ ∧ EY XEYφUψ)

Implementation:

easy algorithms: implement EY X and compute fixpoints (using BDDs)

similar to CTL, but deal with indicator functions rather than with sets of states

56 / 68

(Some) fixed-points for pmARCTL

Recursive equivalences in pmARCTL:

q |=υ EY Gφ ⇐⇒ q |=υ φ ∧
(
EY XEY Gφ ∨ ¬EY X true

)
Explanation: φ holds along a maximal path starting at q and labelled with a
Y–action iff φ holds in q and either there is no outgoing Y–action (deadlock)
or there is a Y–action s.t. when fired it leads to a state where EY Gφ holds

EYφUψ ⇐⇒ ψ ∨ (φ ∧ EY XEYφUψ)

Implementation:

easy algorithms: implement EY X and compute fixpoints (using BDDs)

similar to CTL, but deal with indicator functions rather than with sets of states

56 / 68

(Some) fixed-points for pmARCTL

Recursive equivalences in pmARCTL:

q |=υ EY Gφ ⇐⇒ q |=υ φ ∧
(
EY XEY Gφ ∨ ¬EY X true

)
Explanation: φ holds along a maximal path starting at q and labelled with a
Y–action iff φ holds in q and either there is no outgoing Y–action (deadlock)
or there is a Y–action s.t. when fired it leads to a state where EY Gφ holds

EYφUψ ⇐⇒ ψ ∨ (φ ∧ EY XEYφUψ)

Implementation:

easy algorithms: implement EY X and compute fixpoints (using BDDs)

similar to CTL, but deal with indicator functions rather than with sets of states

56 / 68

(Some) fixed-points for pmARCTL

Recursive equivalences in pmARCTL:

q |=υ EY Gφ ⇐⇒ q |=υ φ ∧
(
EY XEY Gφ ∨ ¬EY X true

)
Explanation: φ holds along a maximal path starting at q and labelled with a
Y–action iff φ holds in q and either there is no outgoing Y–action (deadlock)
or there is a Y–action s.t. when fired it leads to a state where EY Gφ holds

EYφUψ ⇐⇒ ψ ∨ (φ ∧ EY XEYφUψ)

Implementation:

easy algorithms: implement EY X and compute fixpoints (using BDDs)

similar to CTL, but deal with indicator functions rather than with sets of states

56 / 68

(Some) fixed-points for pmARCTL

Recursive equivalences in pmARCTL:

q |=υ EY Gφ ⇐⇒ q |=υ φ ∧
(
EY XEY Gφ ∨ ¬EY X true

)
Explanation: φ holds along a maximal path starting at q and labelled with a
Y–action iff φ holds in q and either there is no outgoing Y–action (deadlock)
or there is a Y–action s.t. when fired it leads to a state where EY Gφ holds

EYφUψ ⇐⇒ ψ ∨ (φ ∧ EY XEYφUψ)

Implementation:

easy algorithms: implement EY X and compute fixpoints (using BDDs)

similar to CTL, but deal with indicator functions rather than with sets of states

56 / 68

(Some) fixed-points for pmARCTL

Recursive equivalences in pmARCTL:

q |=υ EY Gφ ⇐⇒ q |=υ φ ∧
(
EY XEY Gφ ∨ ¬EY X true

)
Explanation: φ holds along a maximal path starting at q and labelled with a
Y–action iff φ holds in q and either there is no outgoing Y–action (deadlock)
or there is a Y–action s.t. when fired it leads to a state where EY Gφ holds

EYφUψ ⇐⇒ ψ ∨ (φ ∧ EY XEYφUψ)

Implementation:

easy algorithms: implement EY X and compute fixpoints (using BDDs)

similar to CTL, but deal with indicator functions rather than with sets of states

56 / 68

Conclusion

At this stage, you know about action synthesis

Let us see some tool support (next sequence)

57 / 68

Conclusion

At this stage, you know about action synthesis

Let us see some tool support (next sequence)

57 / 68

58 / 68

SPATULA in a nutshell

59 / 68

First of all. . .

You now know about action synthesis

Let us now see some tool support

60 / 68

First of all. . .

You now know about action synthesis

Let us now see some tool support

60 / 68

SPATULA: example

p

s0

p

s1

safe s2

safe

s3

p

s4

act1

act4

act2

act2

act3

act4

EY Fsafe

module SimpleMTS :

i = 0 ;
f o r i i n (0 . . 5) {

v e r t = " s " + i ;
bloom (v e r t) ;

}
mark_with (" s0 " , " i n i t i a l ") ;

mark_with (" s0 " , " p ") ;
mark_with (" s1 " , " p ") ;
mark_with (" s4 " , " p ") ;
mark_with (" s2 " , " safe ") ;
mark_with (" s3 " , " safe ") ;

j o i n _ w i t h (" s0 " , " s1 " , " act1 ") ;
j o i n _ w i t h (" s0 " , " s2 " , " act2 ") ;
j o i n _ w i t h (" s1 " , " s0 " , " act4 ") ;
j o i n _ w i t h (" s1 " , " s4 " , " act3 ") ;
j o i n _ w i t h (" s1 " , " s3 " , " act2 ") ;
j o i n _ w i t h (" s4 " , " s0 " , " act4 ") ;

v e r i f y :
#EF($Y ; (safe)) ;

61 / 68

SPATULA: example

p

s0

p

s1

safe

s2

safe

s3

p

s4

act1

act4

act2

act2

act3

act4

EY Fsafe

module SimpleMTS :

61 / 68

SPATULA: example

p

s0

p

s1

safe

s2

safe

s3

p

s4

act1

act4

act2

act2

act3

act4

EY Fsafe

module SimpleMTS :

i = 0 ;
f o r i i n (0 . . 5) {

v e r t = " s " + i ;
bloom (v e r t) ;

}
mark_with (" s0 " , " i n i t i a l ") ;

61 / 68

SPATULA: example

p

s0

p

s1

safe s2

safe

s3

p

s4

act1

act4

act2

act2

act3

act4

EY Fsafe

module SimpleMTS :

i = 0 ;
f o r i i n (0 . . 5) {

v e r t = " s " + i ;
bloom (v e r t) ;

}
mark_with (" s0 " , " i n i t i a l ") ;

mark_with (" s0 " , " p ") ;
mark_with (" s1 " , " p ") ;
mark_with (" s4 " , " p ") ;
mark_with (" s2 " , " safe ") ;
mark_with (" s3 " , " safe ") ;

61 / 68

SPATULA: example

p

s0

p

s1

safe s2

safe

s3

p

s4

act1

act4

act2

act2

act3

act4

EY Fsafe

module SimpleMTS :

i = 0 ;
f o r i i n (0 . . 5) {

v e r t = " s " + i ;
bloom (v e r t) ;

}
mark_with (" s0 " , " i n i t i a l ") ;

mark_with (" s0 " , " p ") ;
mark_with (" s1 " , " p ") ;
mark_with (" s4 " , " p ") ;
mark_with (" s2 " , " safe ") ;
mark_with (" s3 " , " safe ") ;

j o i n _ w i t h (" s0 " , " s1 " , " act1 ") ;
j o i n _ w i t h (" s0 " , " s2 " , " act2 ") ;
j o i n _ w i t h (" s1 " , " s0 " , " act4 ") ;
j o i n _ w i t h (" s1 " , " s4 " , " act3 ") ;
j o i n _ w i t h (" s1 " , " s3 " , " act2 ") ;
j o i n _ w i t h (" s4 " , " s0 " , " act4 ") ;

61 / 68

SPATULA: example

p

s0

p

s1

safe s2

safe

s3

p

s4

act1

act4

act2

act2

act3

act4

EY Fsafe

module SimpleMTS :

i = 0 ;
f o r i i n (0 . . 5) {

v e r t = " s " + i ;
bloom (v e r t) ;

}
mark_with (" s0 " , " i n i t i a l ") ;

mark_with (" s0 " , " p ") ;
mark_with (" s1 " , " p ") ;
mark_with (" s4 " , " p ") ;
mark_with (" s2 " , " safe ") ;
mark_with (" s3 " , " safe ") ;

j o i n _ w i t h (" s0 " , " s1 " , " act1 ") ;
j o i n _ w i t h (" s0 " , " s2 " , " act2 ") ;
j o i n _ w i t h (" s1 " , " s0 " , " act4 ") ;
j o i n _ w i t h (" s1 " , " s4 " , " act3 ") ;
j o i n _ w i t h (" s1 " , " s3 " , " act2 ") ;
j o i n _ w i t h (" s4 " , " s0 " , " act4 ") ;

v e r i f y :
#EF($Y ; (safe)) ;

61 / 68

SPATULA: example, ct’d

p

s0

p

s1

safe s2

safe

s3

p

s4

act1

act4

act2

act2

act3

act4

EY Fsafe

spatula -f SimpleMTS.txt find all Ys. . .
spatula -m -f SimpleMTS.txt find minimal covering of Ys. . .

(Easy) question: what is minimal Y here?

A: s0 |= EY Fsafe ⇐⇒ {act2} ⊆ Y

62 / 68

SPATULA: example, ct’d

p

s0

p

s1

safe s2

safe

s3

p

s4

act1

act4

act2

act2

act3

act4

EY Fsafe

spatula -f SimpleMTS.txt find all Ys. . .
spatula -m -f SimpleMTS.txt find minimal covering of Ys. . .

(Easy) question: what is minimal Y here?

A: s0 |= EY Fsafe ⇐⇒ {act2} ⊆ Y

62 / 68

Conclusion

At this stage:

you know basics on Petri nets with two kinds of parameters: discrete
parameters and timing parameters

you know basics of Roméo

you know what Mixed Transition Systems are

you understand the problem of action synthesis for Parametric
Action-Restricted CTL

you know basics of modelling and synthesis in SPATULA

Let us practice with Roméo and SPATULA

63 / 68

Conclusion

At this stage:

you know basics on Petri nets with two kinds of parameters: discrete
parameters and timing parameters

you know basics of Roméo

you know what Mixed Transition Systems are

you understand the problem of action synthesis for Parametric
Action-Restricted CTL

you know basics of modelling and synthesis in SPATULA

Let us practice with Roméo and SPATULA

63 / 68

64 / 68

Bibliography

65 / 68

References I

Alur, R., Henzinger, T. A., and Vardi, M. Y. (1993). Parametric real-time reasoning. In STOC, pages 592–601. ACM.

André, É., Lime, D., and Roux, O. H. (2015). Integer-complete synthesis for bounded parametric timed automata. In
RP, volume 9058 of Lecture Notes in Computer Science. Springer.

Bérard, B., Cassez, F., Haddad, S., Lime, D., and Roux, O. H. (2013). The expressive power of time Petri nets.
Theoretical Computer Science, 474:1–20.

Berthomieu, B. and Diaz, M. (1991). Modeling and verification of time dependent systems using time Petri nets. IEEE
Trans. on Soft. Eng., 17(3):259–273.

Berthomieu, B. and Menasche, M. (1983). An enumerative approach for analyzing time Petri nets. In Mason, R.
E. A., editor, Information Processing: proceedings of the IFIP congress 1983, volume 9 of IFIP congress series,
pages 41–46. Elsevier Science Publishers, Amsterdam.

David, N., Jard, C., Lime, D., and Roux, O. H. (2015). Discrete parameters in Petri nets. In Devillers, R. and Valmari,
A., editors, The 36th International Conference on Application and Theory of Petri Nets and Concurrency (Petri
Nets 2015), volume 9115 of Lecture Notes in Computer Science, pages 137–156, Brussels, Belgium. Springer.

Gardey, G., Lime, D., Magnin, M., and Roux, O. H. (2005). Roméo: A tool for analyzing time Petri nets. In Etessami,
K. and Rajamani, S. K., editors, 17th International Conference on Computer Aided Verification (CAV 2005),
volume 3576 of Lecture Notes in Computer Science, pages 418–423, Edinburgh, Scotland, UK. Springer-Verlag.

Gardey, G., Roux, O. H., and Roux, O. F. (2006). State space computation and analysis of time Petri nets. Theory
and Practice of Logic Programming (TPLP). Special Issue on Specification Analysis and Verification of Reactive
Systems, 6(3):301–320.

Jovanović, A., Lime, D., and Roux, O. H. (2015). Integer parameter synthesis for timed automata. IEEE Transactions
on Software Engineering, 41(5):445–461.

Karp, R. M. and Miller, R. E. (1969). Parallel program schemata. Journal of Computer and System Sciences,
3(2):147 – 195.

66 / 68

References II

Knapik, M., Męski, A., and Penczek, W. (2015). Action synthesis for branching time logic: Theory and applications.
ACM Trans. Embedded Comput. Syst.

Lime, D., Roux, O. H., Seidner, C., and Traonouez, L.-M. (2009). Romeo: A parametric model-checker for Petri nets
with stopwatches. In TACAS, volume 5505 of Lecture Notes in Computer Science, pages 54–57. Springer.

Miller, J. S. (2000). Decidability and complexity results for timed automata and semi-linear hybrid automata. In HSCC,
volume 1790 of Lecture Notes in Computer Science, pages 296–309. Springer.

Minsky, M. L. (1967). Computation: finite and infinite machines. Prentice-Hall, Inc., NJ, USA.

Traonouez, L.-M., Lime, D., and Roux, O. H. (2009). Parametric model-checking of stopwatch Petri nets. Journal of
Universal Computer Science, 15(17):3273–3304.

67 / 68

68 / 68

